
Kinetic Algorithms via Self-Adjusting Computation

Umut A. Acar1, Guy E. Blelloch2, Kanat Tangwongsan2, and Jorge L. Vittes3

1 Toyota Technological Institute
2 Carnegie Mellon University

3 Stanford University

Abstract. Define a static algorithm as an algorithm that computes some com-
binatorial property of its input consisting of static, i.e., non-moving, objects. In
this paper, we describe a technique for syntactically transforming static algo-
rithms into kinetic algorithms, which compute properties of moving objects. The
technique offers capabilities for composing kinetic algorithms, for integrating dy-
namic and kinetic changes, and for ensuring robustness even with fixed-precision
floating-point arithmetic. To evaluate the effectiveness of the approach, we im-
plement a library for performing the transformation, transform a number of algo-
rithms, and give an experimental evaluation. The results show that the technique
performs well in practice.

1 Introduction

Since first proposed by Basch, Guibas, and Hershberger [13], many kinetic data struc-
tures for computing properties of moving objects have been designed and analyzed
(e.g., [8, 12, 9]). Some kinetic data structures have also been implemented [14, 12, 17].
A kinetic data structure for computing a property can be viewed as maintaining the
proof obtained by running a static algorithm for computing that property. Based on this
connection between static algorithms and kinetic data structures, previous work devel-
oped kinetic data structures by kinetizing static algorithms. In all previous approaches,
the kinetization process is performed manually.

This paper proposes techniques for kinetizing static algorithms semi-automatically
by applying a syntactic transformation. We call such kinetized algorithms as kinetic
algorithms. The transformation (Section 2) relies on self-adjusting computation [1],
where programs can respond to any change to their data (e.g., insertions/deletions
into/from the input, changes to the outcomes of comparisons) by running a general-
purpose change-propagation algorithm. We evaluate the effectiveness of the approach
by kinetizing a number of algorithms (Sections 3 and 4), including the merge-sort
and the quick-sort algorithms, the Graham-Scan [16], merge-hull, quick-hull [11], ulti-
mate [15] algorithms for computing convex hulls, and Shamos’s algorithm for comput-
ing diameters [21] and performing an experimental evaluation. Our experiments (Sec-
tion 5) show that kinetized algorithms are efficient in practice.

For the transformation to yield an efficient kinetic algorithm, the static algorithms
being transformed need to be stable. Informally, an algorithm is stable if a small change
to the input causes a small change in the execution of the algorithm. In previous work [1,
6] we have formalized the notion of stability and described approaches to analyzing it.

In practice many algorithms seem stable with respect to small input changes, or can be
made stable with minor modifications. From a theoretical point of view, our approach
can be viewed as a reduction from dynamic/kinetic problems to stable, static problems.
Given that the algorithm designer needs to analyze the stability, one may wonder what
advantages the approach has over direct design of kinetic data structures, which often
also start by considering static algorithms.

We briefly describe here several advantages of the approach over traditional ap-
proaches. In addition to guaranteeing the correctness of kinetized algorithms, the ap-
proach enables some capabilities that can dramatically simplify the design and imple-
mentation of algorithms for motion simulation. These capabilities are inherent to the
approach (require no changes to the implementation) and include composibility, inte-
gration of dynamic and kinetic changes, and the ability to advance the simulation time
to any time in the future. Composibility refers to the ability to send (or pipe) the out-
put of one kinetic algorithm to another: e.g., if f(·) and g(·) are kinetic algorithms,
then f(g(·)) is a kinetic algorithm. Composibility is important for building large soft-
ware systems from smaller modules. Integration of dynamic and kinetic changes refers
to the ability of kinetic algorithms to respond to both dynamic changes (e.g., inser-
tions/deletions into/from the input), and kinetic changes due to motion. With previ-
ously proposed approaches, integrating dynamic and kinetic changes can involve ma-
jor changes to a dynamic or kinetic data structure. For example, Basch et al.’s kinetic
convex-hull data structure [13], which does not handle dynamic changes, is very dif-
ferent from Alexandron et al.’s data structure [10], which supports integrated changes.
Advancing-time capability refers to the ability to advance the simulation time to any
time in the future. In addition to combining time-stepping and kinetic simulation ap-
proaches, this capability also helps ensure robustness in the presence of certain numeri-
cal inaccuracies (discussed in more detail below). Since the approach makes it possible
to transform static algorithms into kinetic semi-automatically and guarantees correct-
ness, it also has some software engineering benefits: only the static code needs to be
maintained, documented, and debugged.

An important problem in motion simulation is ensuring robustness in the presence
of numerical errors in computing the roots of certain polynomials, called certificate
polynomials. These roots give the failure times (events) at which the computed property
may change. Based on the advancing-time capability of kinetic algorithm, we describe
a scheduling algorithm that guarantees robustness even with finite-precision floating-
point arithmetic (Section 2.2). The idea behind our approach is to process the events
closer than the smallest computable precision together as a batch. In all previous work,
events are processed one by one by computing their order exactly—this requires expen-
sive numerical techniques based on exact and/or interval arithmetic [19, 18, 17]. The
reason for processing events one by one is that events may be interdependent: pro-
cessing one may invalidate another. Our approach is made possible by the ability of
the change-propagation algorithm to process interdependent events correctly. It is not
known if previously proposed approaches based on kinetic data structures can be ex-
tended to support interdependent events (efficiently).

To illustrate the differences between our proposal and traditional approaches based
on kinetic data structures, consider the example of computing the convex hull of a set

Fig. 1: Computing the convex hull of a set of points that are above some line.

of points above some dividing line (e.g., Figure 1). In the static setting, where points
do not move, this can be performed by composing a function filter s that finds the
points above a line with the function hull s that computes the convex hull, i.e., the al-
gorithm can be expressed as hull s(filter s(P)), where P is a set of points. Our ap-
proach enables giving the kinetic algorithm hull k(filter k(P k)), where hull k
and filter k are the kinetic versions of filter s and hull s obtained by applying
our syntactic transformation, and P k is a set of moving points. This algorithm supports
the aforementioned capabilities without further modifications to the implementation.

Suppose we want to solve the same problem by composing the kinetic data struc-
tures filter kds and hull kds for the filtering and the convex hull problems. Note
first that hull kds must respond to integrated dynamic and kinetic changes, because
the output of filter kds will change over time as points cross the dividing line. To
compose the two data structures, it is also necessary to convert the changes in the output
of filter kds into appropriate insert/delete operations for hull kds. This requires
1) computing the “edit” (changes) between successive outputs of filter kds, 2) im-
plementing a data structure for communicating the changes to hull kds (chapter 9
in Basch’s thesis [12]). We don’t know of any previously proposed general-purpose
approaches to computing “edits” between arbitrary data structures efficiently. Finally,
kinetic data structures rely on processing events one by one. This requires sequentializ-
ing simultaneous events (e.g., when multiple points cross the dividing line at the same
time) and using costly numerical techniques to determine the exact order of failing cer-
tificates.

2 From Static to Kinetic Programs

We describe the transformation from static to kinetic algorithms, and present an algo-
rithm for robust motion simulation by exploiting certain properties of the transformation
(Section 2.2). The asymptotic complexity of kinetic algorithms can be determined by
analyzing the stability of the program; we describe stability briefly in Section 2.3.

2.1 The Transformation

The transformation of a static program (algorithm) into a kinetic program requires two
steps. First, the static program is transformed into a self-adjusting program. Second, the
self-adjusting program is kinetized by linking it with a kinetic scheduler.

Transforming a static program into a self-adjusting program requires annotating the
program with primitives for creating, reading, and writing modifiable references, and
for memoization. A modifiable (reference) is a reference, whose contents is a change-
able or time dependent value. In particular, once a self-adjusting program executes, the
contents of modifiables can be changed, and the computation can be updated by run-
ning a change-propagation algorithm. For the purposes of this paper, changeable data
consists of all comparisons that involve moving points, and the “next pointers” in the
input list. Placing the outcomes of comparisons into modifiables enables changing them
as points move; placing the links into modifiables enables inserting/deleting elements
into/from the input. After the programmer determines what data is changeable, s/he can
transform the program by annotating it with the aforementioned primitives. This trans-
formation is aided by language techniques that ensures correctness [1, 2, 4]. Example
transformations can be found elsewhere [7, 1].

Kinetizing a self-adjusting program requires replacing the comparisons in the pro-
gram with certificate-generating comparisons. This is achieved by linking the program
with a library that provides the certificate-generating comparisons. When executed, a
certificate-generating comparison creates a certificate consisting of a boolean value and
a certificate function that represents the value of the certificate over time. Creating a cer-
tificate requires computing its failure time by finding the roots of its certificate function,
and inserting the certificate into a certificate (priority) queue. An event scheduler sim-
ulates motion by repeatedly removing the earliest certificate to fail from the certificate
queue, changing its outcome, and running the change propagation.

The key difference between our approach and the previously proposed approaches to
motion simulation is the use of the change-propagation algorithm for updating computa-
tion. Instead of requiring the design of a kinetic data structure, the change-propagation
algorithm takes advantage of the computation structure expressed by the static algo-
rithm to update the output. To achieve efficiency, the change-propagation algorithm [3,
1] relies on an integral combination of memoization [5] and dynamic-dependence graphs [6,
4]. Since change-propagation is general purpose and can handle any change to the com-
putation, kinetic (self-adjusting) algorithm have the following capabilities:

– Integrated Changes: They can respond to any change to their data including any
combination of changes to the input (a.k.a., dynamic changes), and changes to the
outcomes of comparisons (a.k.a., kinetic changes).

– Composibility: They are composable: if f(·) and g(·) are kinetic algorithms, then
so is f(g(·)).

– Advancing Time: In a kinetic simulation with a kinetic (self-adjusting) algorithm,
the simulation time can be advanced from the current time to any time t in the
future. This requires first changing the outcome of certificates that fail between the
current time and t, and then running change propagation.

2.2 Robust Motion Simulation

Traditional approaches to motion-simulation based on kinetic data structures rely on
computing the exact order in which certificates fail. The reason for this is correctness:
since comparisons can be interdependent, changing the outcome of one certificate can

safe

unsafe

Fig. 2: The simulation time, the certificate failure intervals, and safe and unsafe time intervals.

invalidate (delete) another certificate. Thus, if the failure order of comparisons is not
determined exactly, then the event scheduler can prematurely process an event e1, be-
fore the event e2 that invalidates e1. This can easily lead to an error by violating critical
invariants. Previous work on robust motion simulation focused on techniques for deter-
mining the exact order of failure times by using numerical approaches [19, 18, 17].

We propose an algorithm for robust motion simulation that only requires fixed-
precision floating-point arithmetic. The algorithm takes advantage of the advancing-
time property of kinetic algorithms to perform change-propagation only at “safe” points
in time at which the outcomes of certificates can be computed precisely. Given a kinetic
simulation, where each certificate is associated with an interval that contains its exact
failure time, we say that a time t is safe if t is not contained in the interval of any
certificate. Figure 2 shows a hypothetical example and some safe time intervals.

If the scheduler could determine the safe time points, then it would perform a robust
simulation by repeatedly advancing the time to the earliest next safe time, i.e., target.
Since the outcomes of all comparisons can be determined correctly at safe targets, such
a simulation is guaranteed to be correct. It is not possible, however, to know what targets
are safe online, because this requires knowing all the future certificates. Our algorithm
therefore selects a safe target t based on existing certificates and aborts when it finds
that t becomes unsafe, which happens if, during the change propagation, a certificate
whose interval contains t is created. To abort, the algorithm restarts the simulation at
the next safe time greater than t (this ensures progress).

As discussed in Section 5, this approach seems very effective in practice. To en-
sure robustness, the scheduler needs to process less than two certificates per event (on
average), and requires very few restarts.

2.3 Stability

The asymptotic complexity of change propagation with a kinetic algorithm can be de-
termined by analyzing the stability of the kinetic algorithm. Since this paper concerns
experimental issues, we give a brief overview of stability here and refer the reader to the
first author’s thesis for further details [1]. The stability of an algorithm is measured by
computing the “edit distance” between the executions of the algorithm on different data
as the symmetric set difference of the executed instructions. For example, the stability
of the merge sort algorithm under a change to the outcome of one of the comparisons
can be determined by computing the symmetric set difference of the set of comparisons
performed before and after this change. Elsewhere [1], we prove that, under certain
conditions, change-propagation takes time proportional to the edit distance between the
traces of the algorithm on the inputs before and after the change.

3 Implementation

We implemented a library for transforming static algorithms into kinetic. The library
consists of primitives for creating certificates, event scheduling, and is based on a
library for self-adjusting-computation. The self-adjusting-computation library is de-
scribed elsewhere [3, 2]. The implementation of the kinetic event scheduler follows the
description in Section 2.2; as a priority queue, a binary heap is used. For solving the
roots of the polynomials, the library relies on a degree-two solver, which uses the stan-
dard floating-point arithmetic and makes no further accuracy guarantees. The solver can
be extended to solve higher-degree polynomials. The full code for the implementation
is available at http://ttic.uchicago.edu/˜umut/sting

4 Applications

Using our library for kinetizing static algorithms, we implemented a number of algo-
rithms and kinetized them. The algorithms include an algorithm for finding the mini-
mum key in a list (minimum), the quick-sort and the merge-sort algorithms, several
convex hull algorithms including graham-scan [16], quick-hull [11], merge-hull,
the (improved) ultimate convex-hull algorithm [15], and an algorithm, called diameter,
for finding the diameter of a set of points [20]. The input to all our algorithms is a list of
one or two dimensional points. Each component of a point is a univariate polynomial of
time with floating-point coefficients. In the static versions of the algorithms, the poly-
nomials have degree zero; in the kinetic versions, the polynomials can have an arbitrary
degree depending on the particular motion represented. For our experiments, we only
consider linear motion plans; the polynomials therefore have no more than degree 2.

To obtain an efficient kinetic algorithm for an application, we first implement a sta-
ble, static algorithm for that application and then transform the algorithm into a kinetic
algorithm using the techniques described in Section 2.1. The transformation increases
the number of lines by about 20% on average. Our implementations rely on the capa-
bility to compose kinetic algorithms: the quick-hull and ultimate algorithms use
minimum to find the point furthest away from a line; graham-scan uses merge-sort
to sort its input points; diameter uses quick-hull to compute the convex hull of the
points and minimum to find the furthest antipodal pair, etc.

Not every algorithm is stable. For example, the straightforward list-traversal algo-
rithm for computing the minimum of a list of keys is not stable. Our algorithm for
computing the minimum relies on random-sampling (details can be found elsewhere [7,
1]). The other algorithms require small changes to ensure stability: the merge-sort
and merge-hull algorithms require randomizing the split phase so that the input list
is randomly divided into two sets (instead of dividing in the middle); the ultimate
convex-hull algorithm requires randomizing the elimination step; the quick-sort,
quick-hull, graham-scan, and diameter algorithms require no changes.

5 Experimental Results

We present an experimental evaluation of the approach. We give detailed experimental
results for the diameter application, and summarize the results for other applications.

We compare our kinetic minimum algorithm to a (hand-designed) kinetic data struc-
ture for maintaining the minimum [13, 12]. 4 We finish by comparing the convex-hull
algorithms and discussing the effectiveness of our robust scheduling algorithm.

Experimental Setup. We ran our experiments on a 2.7GHz Power Mac G5 with 4
gigabytes of memory. We compiled the applications with the MLton compiler using
“-runtime ram-slop 1” option that directs the run-time system to use all the avail-
able memory on the system—MLton, however, can allocate a maximum of about two
gigabytes. Since MLton uses garbage collection, the total time depends on the partic-
ulars of the garbage-collection system. We therefore report the application time, mea-
sured as the total time minus the time spent for garbage collection (garbage collection is
discussed elsewhere [3]). For the experiments, we use a standard floating-point solver
with the robust kinetic scheduler (Section 2.2). We assume that certificate failure times
are computed within an error of ±10−10.

Input Generation. We generate the inputs for our experiments randomly. For one-
dimensional applications, we generate points uniformly at random between 0.0 and
1.0 and assign them velocities uniformly at random between −0.5 and 0.5. For two-
dimensional applications, we pick points from within the unit square uniformly at ran-
dom and assigning a constant velocity vector to each point where each component is
selected from the interval [−0.5, 0.5] uniformly at random.

Measurements. In addition to measuring various quantities such as the number of
events in a kinetic simulation, we run some specific experiments. These experiments
are described below; throughout, n denotes the input size (e.g., number of points).

– Average time for an insertion/deletion: This is measured by applying a delete-
propagate-insert-propagate step to each point in the input. Each step deletes an
element, runs change propagation, inserts the element back, and runs change prop-
agation. The average is taken over all propagations. 5

– Average time for a kinetic event: This is measured by running a kinetic simula-
tion and averaging over all events. For all applications except for graham-scan
and sorting applications, we run the simulations to completion. For sorting and
graham-scan applications, we run the simulations for the duration of 10×n events.

– Average time for an integrated dynamic change & kinetic event: This is mea-
sured by running a kinetic simulation while performing one dynamic change at
every kinetic event. Each dynamic change scales the coordinates of a point by 0.8.
We run the simulation for the duration of 2×n events such that all points are scaled
twice. The average is taken over all events and changes.

4 We also tried to compare our implementation to the implementation of kinetic convex-hulls by
Basch et al. [14]. Unfortunately, we could not compile their implementation, because it relies
on depreciated libraries.

5 When measuring these operations, the kinetic event queue operations are turned off.

 0

 1

 2

 3

 4

 5

 6

 0 20000 40000 60000 80000 100000

T
im

e
(s

)

Input Size

Time (Kinetic)
Time (Static)

Fig. 3: Time (seconds) for initial run
(diameter).

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 20000 40000 60000 80000 100000

T
im

e
(s

)

Input Size

Simulation Time

Fig. 4: The time (seconds) for a complete
kinetic simulation (diameter).

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 20000 40000 60000 80000 100000

Ti
m

e
(m

s)

Input Size

Time (diameter)

Fig. 5: Average time (milliseconds) for an
insertion/deletion (diameter).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20000 40000 60000 80000 100000

Ti
m

e
(m

s)
Input Size

O(log^2(x))
Kinetic & Dynamic

Kinetic

Fig. 6: Average time (milliseconds) per
kinetic event and integrated changes
(diameter).

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 20000 40000 60000 80000 100000

S
pe

ed
up

Input Size

Speedup (diameter)

Fig. 7: Average speedup for kinetic events
(diameter).

 0

 10

 20

 30

 40

 50

 60

 0 200000 400000 600000 800000 1e+06

T
im

e
(s

)

Input Size

Simulation (minimum)
Simulation (minimum KDS)

Fig. 8: Simulation time with minimum and
a tournament-based kinetic data structure.

Diameter. The diameter application first computes (using quick-hull) the convex
hull of its input, performs a scan of the convex hull to compute the antipodal pairs, and
finds (using minimum) the pair that is furthest apart. We note that Agarwal et al. give a
similar algorithm for computing diameters, but they provide no implementation [8]. We
expect a similar technique can be used to compute the width of a point set.

Figure 3 shows the total time for a from-scratch run of the kinetic diameter al-
gorithm for varying input sizes. The figure shows that the kinetic algorithm is at most
5 times slower than the static algorithm for the considered inputs—due to the event
queue, asymptotic overhead of a kinetic algorithm is O(log n). Figure 4 shows the total
time for complete kinetic simulations of varying input sizes—the curve seems slightly
super-linear. Figure 5 shows the average time for change propagation after an inser-
tion/deletion for varying inputs. Note that the time for change propagation decreases
slightly as the input size increases. We believe that this is because the running time

Appli- n Static Kinetic Over- Insert Speedup
cation Run Run head Delete

minimum 106 0.8 6.2 7.8 1.6 × 10−5 > 50000
merge-sort 105 1.3 9.7 7.4 3.6 × 10−4 > 4000
quick-sort 105 0.3 9.8 31.6 3.7 × 10−4 > 800

graham-scan 105 2.3 12.5 5.4 8.0 × 10−4 > 3000
merge-hull 105 2.2 10.0 4.7 6.0 × 10−3 > 300
quick-hull 105 1.1 5.0 4.7 2.1 × 10−4 > 5000
ultimate 105 1.8 7.8 4.2 1.0 × 10−3 > 1500
diameter 105 1.1 5.0 4.7 2.3 × 10−4 > 5000

Table 1: From-scratch runs and dynamic changes.

Appli- n Static Simu- # # Ext. Per Per Int. Speedup
cation Run lation Events Events Event Event

minimum 106 0.8 40.2 5.3 × 105 9 9.3 × 10−5 9.3 × 10−5 > 8000
merge-sort 105 1.3 239.1 106 106 2.4 × 10−4 9.8 × 10−4 > 6000
quick-sort 105 0.3 430.9 106 106 4.3 × 10−4 2.9 × 10−2 > 700

graham-scan 105 2.3 710.3 106 38 7.1 × 10−4 1.4 × 10−3 > 3000
merge-hull 105 2.2 1703.6 6.8 × 105 293 2.5 × 10−3 7.4 × 10−3 > 800
quick-hull 105 1.1 171.9 3.1 × 105 293 5.6 × 10−4 8.9 × 10−4 > 2000
ultimate 105 1.8 1757.8 4.1 × 105 293 4.3 × 10−3 7.3 × 10−3 > 400
diameter 105 1.1 184.4 3.1 × 105 11 5.9 × 10−4 8.7 × 10−4 > 2000

Table 2: Kinetic simulations (also with integrated changes).

for diameter (and thus change propagation) is sensitive to the size of the convex-
hull of the points. In particular, 1) deleting/inserting a point from/into the inside of a
convex hull of the input points is cheap and 2) with uniformly randomly distributed
points, many of the points are expected to be inside the hull. Figure 6 shows the aver-
age time per kinetic event and the average time for an integrated dynamic change and
kinetic event. Both curves fit O(log2 n). These experimental results match best known
asymptotic bounds for the kinetic diameter problem [8]. To measure of how fast change
propagation is, we compute the average speedup (Figure 7) as the ratio of the average
time for one kinetic event to the time for a from-scratch execution of the static version.
As can be seen, the speedup increases nearly linearly with the input size to exceed three
orders of magnitude.

Other benchmarks. We report a summary of our results for other benchmarks at
fixed input sizes. Table 1 shows, for input sizes (“n”), the timings for from-scratch
executions of the static version (“Static Run”) and the kinetic version (“Kinetic Run”),
the overhead, the average time for change propagation after an insertion/deletion (“In-
sert/Delete”), and the speedup of change propagation computed as the average time for
an insertion/deletion divided by the time for recomputing from scratch using the static
algorithm. The overhead, defined as the ratio of the time for a kinetic run to the time for
a static run, is O(log n) asymptotically because of the certificate-queue operations. The
experiments show that the overhead is about 9 on average for the considered inputs,

but varies significantly depending on the applications. As can be expected, the more
sophisticated the algorithm, the smaller the overhead, because the time taken by the
library operations (operations on certificates, event queue, modifiables, etc.) compared
to the amount of “real” work performed by the static algorithm is small for more so-
phisticated algorithms. The “speedup” column shows that change propagation can be
orders of magnitude faster than recomputing from scratch.

Table 5 shows the timings for kinetic simulations. The “n” column shows the input
size, “Simulation” column shows the time for a kinetic simulation, the “# Events” and
“# Ext. Events” columns show the number of events and external events respectively, the
“per Event” column shows the average time per kinetic event. The “per int. ev.” column
shows the average time for an integrated dynamic and kinetic event. The “Speedup”
column shows the average speedup computed as the ratio of time for a from-scratch
execution of the static version to the average time for an event. The speedup column
shows that the change propagation is orders of magnitude faster than re-computing
from scratch.

The results show that merge-sort is more effective than quick-sort: the merge-sort
algorithm is two times faster for kinetic events and nearly thirty times faster for inte-
grated events. We discuss the convex-hull algorithms below.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20000 40000 60000 80000 100000

Ti
m

e(
m

s)

Input Size

O(log^2(x))
ultimate

merge-hull
quick-hull

Fig. 9: Average time (milliseconds) per ki-
netic event for some convex-hull algo-
rithms.

 0

 2

 4

 6

 8

 10

 0 20000 40000 60000 80000 100000

T
im

e(
m

s)

Input Size

O(log^2(x))
ultimate

merge-hull
quick-hull

Fig. 10: Average time (milliseconds) per
integrated kinetic and dynamic events for
some convex-hull algorithms.

A comparison of convex hull algorithms. We compare the quick-hull, ultimate,
and merge-hull algorithms based on their responsiveness, efficiency and locality. which
measure the effectiveness of kinetic algorithms [13]. Since graham-scan algorithm re-
lies on sorting, it is not practical; we therefore do not discuss graham-scan in detail.

Figure 9 shows the time per event for the convex hull algorithms. In a kinetic simula-
tion, the time per event measures the responsiveness of a kinetic algorithm, and the total
number of events processed determines the efficiency of an algorithm. The total simu-
lation time measures overall effectiveness of a kinetic algorithm. In all these respects,
the algorithms rank from best to worst as quick-hull, merge-hull, and ultimate.

Kinetic algorithms can also be compared based on their locality [13], which is de-
fined as the maximum number of certificates that depend on any input point. The time
for integrated dynamic and kinetic changes (Figure 10) gives a measure of locality be-
cause a change to the coordinates of a point requires recomputing all certificates that

depend on that point. In terms of their locality, the algorithms rank from best to worst
as quick-hull, ultimate, and merge-hull.

The results show that the quick-hull performs best. One disadvantage of quick-hull
is that it is difficult to prove asymptotic bounds for it. If asymptotic complexity is im-
portant, then the experiments indicate that merge-hull algorithm performs better than
ultimate, especially if few dynamic changes are performed.

Comparison to a handcrafted kinetic data structure. One may wonder how the
approach performs relative to handcrafted kinetic data structures. We compare our
minimum algorithm to the tournament-tree based kinetic data structure for maintain-
ing minimum by Basch, Guibas, and Hershberger [13, 12]. Figure 8 shows the total
time of a kinetic simulation with our semi-automatically generated algorithm and the
Basch-Guibas-Hershberger kinetic data structure. Our algorithm is a factor of 3 slower
than the handcrafted data structure.

Robustness. Our experiments rely on the robust scheduling algorithm (Section 2.2). To
determine the effectiveness of the approach, we performed additional testing by running
kinetic simulations and probabilistically verifying the output after each kinetic event.
These tests verified that the approach ensures correctness for all inputs that we consid-
ered: up to 100,000 points with all applications.6 With computational geometry algo-
rithms, the scheduler performed no cold restarts. With sorting (and graham-scan) al-
gorithms, there were ten restarts with 100,000 points—no restarts took place for smaller
inputs. Since sorting algorithms can process up to O(n2), this is not surprising.

The robust scheduling algorithm can process multiple certificates simultaneously.
We measured the number of certificates processed simultaneously to be less than 1.75
averaged over all our applications. Note that both the number of restarts and the num-
ber of certificates can be further decreased by using higher (but still fixed) precision
floating-point numbers.

6 Conclusion

This paper describes the first technique for kinetizing static algorithms by applying a
syntactic transformation based on self-adjusting computation. The technique ensures
that kinetized algorithms are correct, and enables 1) integrating dynamic and kinetic
changes, 2) composing kinetic algorithms, and 3) robust motion simulations. The ef-
fectiveness of the technique is evaluated by considering a number of algorithms and
performing a broad range of experiments. The experimental results show that the ap-
proach performs well in practice.

References

1. Umut A. Acar. Self-Adjusting Computation. PhD thesis, Department of Computer Science,
Carnegie Mellon University, May 2005.

6 These limits are due to memory limitations of the MLton compiler. We could run some appli-
cations with more than 300,000 points.

2. Umut A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper, and Kanat Tangwongsan.
A library for self-adjusting computation. In ACM SIGPLAN Workshop on ML, 2005.

3. Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwongsan. An experimental
analysis of self-adjusting computation, 2006. Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation.

4. Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional programming. In
Proceedings of the 29th Annual ACM Symposium on Principles of Programming Languages,
pages 247–259, 2002.

5. Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selective memoization. In Proceedings
of the 30th Annual ACM Symposium on Principles of Programming Languages, 2003.

6. Umut A. Acar, Guy E. Blelloch, Robert Harper, Jorge L. Vittes, and Maverick Woo. Dy-
namizing static algorithms with applications to dynamic trees and history independence. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2004.

7. Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Jorge Vittes. Kinetic algorithms
via self-adjusting computation. Technical Report CMU-CS-06-115, Department of Com-
puter Science, Carnegie Mellon University, March 2006.

8. Pankaj K. Agarwal, David Eppstein, Leonidas J. Guibas, and Monika Rauch Henzinger.
Parametric and kinetic minimum spanning trees. In Proceedings of the 39th Annual IEEE
Symposium on Foundations of Computer Science, pages 596–605, 1998.

9. Pankaj K. Agarwal, Leonidas J. Guibas, John Hershberger, and Eric Veach. Maintaining the
extent of a moving set of points. Discrete and Computational Geometry, 26(3):353–374,
2001.

10. Giora Alexandron, Haim Kaplan, and Micha Sharir. Kinetic and dynamic data structures
for convex hulls and upper envelopes. In 9th Workshop on Algorithms and Data Structures
(WADS). Lecture Notes in Computer Science, volume 3608, pages 269—281, aug 2005.

11. C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull algorithm for
convex hulls. ACM Trans. Math. Softw., 22(4):469–483, 1996.

12. Julien Basch. Kinetic Data Structures. PhD thesis, Department of Computer Science, Stan-
ford University, June 1999.

13. Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for mobile data.
Journal of Algorithms, 31(1):1–28, 1999.

14. Julien Basch, Leonidas J. Guibas, Craig D. Silverstein, and Li Zhang. A practical evaluation
of kinetic data structures. In SCG ’97: Proceedings of the thirteenth annual symposium on
Computational geometry, pages 388–390, New York, NY, USA, 1997. ACM Press.

15. Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimen-
sions. Discrete and Computational Geometry, 16:361–368, 1996.

16. R. L. Graham. An efficient algorithm for determining the convex hull of a finete planar set.
Information Processing Letters, 1:132–133, 1972.

17. Leonidas Guibas, Menelaos Karaveles, and Daniel Russel. A computational framework for
handling motion. In Proceedings of teh Sixth Workshop on Algorithm Engineering and Ex-
periments, pages 129–141, 2004.

18. Leonidas Guibas and Daniel Russel. An empirical comparison of techniques for updating
delaunay triangulations. In SCG ’04: Proceedings of the twentieth annual symposium on
Computational geometry, pages 170–179, New York, NY, USA, 2004. ACM Press.

19. Leonidas J. Guibas and Menelaos I. Karavelas. Interval methods for kinetic simulations. In
SCG ’99: Proceedings of the fifteenth annual symposium on Computational geometry, pages
255–264. ACM Press, 1999.

20. F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag Inc., 1985.
21. Michael I. Shamos. Computational Geometry. PhD thesis, Department of Computer Science,

Yale University, 1978.

