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Scalable Parallel SpMV Using

Hierarchical Diagonal Blocking
and Precision Reduction Applied to Combinatorial Multigrid




Sparse-Matrix Vector Multiply

the SpMV kernel
X1
X2
sparse
Xn
Matrix A Vector x

Compute Ax, fast in parallel (shared memory)

Numerous applications: iterative linear solver, eigenvalue,

page rank, SVD, interior-point methods, ...




Problem:
Sparse matrix-vector product is slow!

Simple SpMV: for all rows, in parallel, compute A;x

1M rows, 71M nnz ...plenty of parallelism

Speedup*

# cores used

‘@ simple ® ideal

*Intel Nehalem X5550 2.66Ghz (8 cores), 8-core Bandwidth: 27.9 GBytes/sec



Common observation:

Memory bandwidth is the
limiting factor



Memory bandwidth is the
limiting factor

Previous Work:

enhance
locality

row/column reordering
[Oliker et al., Pothen et al.]

v’ cache blocking

[Im et al., Williams et al.]

_index | value
/ \
index value \ [ dindex @ val

index compression precision reduction
[Willcock-Lumsdaine] [Buttari et al.]
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sophisticated

symmetry
[Saad]

hard to parallelize



Symmetric Form: Not Naturally Parallelizable

To compute y = Ax

X Concurrent Read
~———
O

A US:
N
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This Work:

Is there a simple parallel algorithm
that offers the benefits of these
optimizations using a single, simple
representation?



HDB: Hierarchical Diagonal Blocking

can take advantage of
row/column reordering
index compression <— simplified
cache blocking

symmetry «—— made possible w/o locking
-

mixed precision + parallelism

in a single representation



A Simple Example

If a matrix can be ordered...

. - natural parallelism
. O - good cache locality
. - index compression

O . - symmetric form
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But, matrices aren’t always nice!

Decompose A into

_ 0
_
+ off diag.
o B
-

Question: When can we decompose a matrix into

diagonal blocks with only few off-diagonal entries?




Key Observation:

a surprising number of real-world graphs
have small separators!

Graph & Matrix

X cut size small separators:

v can be recursively
partitioned into roughly
equal-sized parts with
cut size < O(n'-°)

Examples: planar graphs, finite element meshes, google
link graph, social networks, US road networks, etc.
e.g. [Ungar’51, Lipton-Tarjan’79, Blanford et al.’04]




C“is"ze small separators:
can be recursively
partitioned into roughly

equal-sized parts with
cut size < O(n'-¢)

all» <----- cut edges
./ @P <« ---- cutedges
/ /

O ® O O ® <« - individual nodes
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-
Jd oede Jo

“separator tree” ordering

allll» <----- cut edges

P <« ---- cutedges

/7

O @ <« - individual nodes

+ hierarchy of submatrices

Level 1

Level 2

Level 3
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HDB: Theoretical Guarantees

w - word size B - block size M - cache size

Theorem:

If an n-by-n matrix has small separators (n'-¢), then

(1) HDB #nnz + O(n/w) words

(2) Cache oblivious algorithm with misses at most
#nnz/B + O(1 + n/(Bw) + n/M°)

(3) Algorithm has polylog depth and is work efficient

This Talk: How does this perform in practice?
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Experiments

large, sparse, symmetric matrices from various domains
(> 1M non-zeros) e.g., FEM, vision (TV denoising)

Intel Nehalem X5550: two 4-core chips, 2.66Ghz

D> How much bandwidth is saved?

} How does that translate into performance gain?

} What is the effect of separator quality?
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Representation Footprint

> 1.5x saving
with blocking

Matrix -

2d-A (1M rows, 50M nnz)

3d-A (TM rows, 69M nnz)
af_shell10 (7.5M rows, 53M nnz)
audikw_1 (.9M rows, 78M nnz)
bone010 (M rows, 72M nnz)
ecology2 (1M rows, 50M nnz)
nd24k (72K rows, 29M nnz)
nlpkkt120 (3.5M rows, 97/M nnz)

pwtk (3.5M rows, 97M nnz)

CSR/dbl

more (~3x) with
precision reduction

Memory Access (MBytes)

HDB/singl

30 36

103 43
657
951
380
30
346
1,212
143




Bandwidth Analysis

Matrix: bone010 - 1M rows, 72M nonzeros

= Bandwidth Avail. Simple =— HDB =— HDB (single)
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Performance Analysis: Median

_ blocked
GFlops Improvements Over Sequential parallel

~/x with only HDB

. ~10x with HDB + reduced precision

12

— locked
parallel parallel

|0

simple
parallel

sequential
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Effects of Separator Quality

robust against small

variability in separator
4 good ordering quality

12 helps everyone

GFlops

10

random Blandford et al. METIS
seq. sim.par. [ blocked par.

*Matrix: audikw_1 - 1M rows, 78 M nonzeros
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When is precision reduction viable?

2X+7Y-4Z=2
3X-4Y+8Z=3

To solve this simple example
of a symmetric diagonally
dominant (SDD) linear system,
values must be determined for
X, Y and Z that satisfy all

three equations.

low-precision “raw” data

use approximate answers
in intermediate steps to
derive full-precision final

solutions
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Combinatorial Multigrid (CMG) Solvers

symmetric diagonally each diagonal element is

dominant (SDD) 5 larger than the sum of the
- absolute values of other
\ elements in that row

combinatorial preconditicﬁing
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SDD Problem Examples

Optical Coherence

Data Mining/Recommender
Tomography

Compute electrical flow |
Compute few eigenvectors

Movie-Subscriber Graph Retina Image




CMG Overview Improvements Over Seq.

> /X on 8 cores (max)

. . . 2X (median
- hierarchical/recursive solver 5.2x (median)

- most work: SpMV + vector-vector ops

high precision

low precision OK
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Take-Home Points

D> Memory Bandwidth Bottleneck

D> Hierarchical Diagonal Blocking (HDB)

simple, compact, cache-friendly

D> CMG using Low-Precision Guide

full-precision answer from low-precision hints
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