Hierarchical Diagonal Blocking

and Precision Reduction Applied to Combinatorial Multigrid

Kanat Tangwongsan

Carnegie Mellon University

Joint work with Guy Blelloch (CMU), Ioannis Koutis (CMU), and Gary Miller (CMU)

*image: GHS_indef, 40,000 nodes, 120,000 edges, courtesy of Yifan Hu

Scalable Parallel SpMV Using

Hierarchical Diagonal Blocking

and Precision Reduction Applied to Combinatorial Multigrid

Sparse-Matrix Vector Multiply

the SpMV kernel

Compute Ax, fast in parallel (shared memory)

Numerous applications: iterative linear solver, eigenvalue, page rank, SVD, interior-point methods, ...

Problem: Sparse matrix-vector product is **slow!**

Simple SpMV: for all rows, in parallel, compute $A_i x$

^{*}Intel Nehalem X5550 2.66Ghz (8 cores), 8-core Bandwidth: 27.9 GBytes/sec

Common observation:

Memory bandwidth is the limiting factor

Memory bandwidth is the limiting factor

Previous Work:

enhance locality

- ✓ row/column reordering [Oliker et al., Pothen et al.]
- √ cache blocking
 [Im et al., Williams et al.]

Symmetric Form: Not Naturally Parallelizable

To compute y = Ax

Concurrent Read Concurrent Write

This Work:

Is there a simple parallel algorithm that offers the benefits of these optimizations using a single, simple representation?

HDB: Hierarchical Diagonal Blocking

can take advantage of

row/column reordering

index compression ← simplified

cache blocking

symmetry ← made possible w/o locking +

mixed precision + parallelism

in a single representation

A Simple Example

If a matrix can be ordered...

- natural parallelism
- good cache locality
- index compression
- symmetric form

But, matrices aren't always nice!

Decompose A into

+ off diag.

Question: When can we decompose a matrix into diagonal blocks with only few off-diagonal entries?

Key Observation:

a surprising number of real-world graphs have small separators!

Graph ⇔ Matrix

small separators:

can be recursively partitioned into roughly equal-sized parts with cut size $\leq O(n^{1-c})$

Examples: planar graphs, finite element meshes, google link graph, social networks, US road networks, etc.

small separators:

can be recursively partitioned into roughly equal-sized parts with cut size $\leq O(n^{1-c})$

"separator tree" ordering

+ hierarchy of submatrices

HDB: Theoretical Guarantees

w - word size

B - block size

M - cache size

Theorem:

If an n-by-n matrix has small separators (n^{1-c}), then

- (1) HDB #nnz + O(n/w) words
- (2) Cache oblivious algorithm with misses at most

$$\#nnz/B + O(1 + n/(Bw) + n/M^c)$$

(3) Algorithm has polylog depth and is work efficient

This Talk: How does this perform in practice?

Experiments

large, sparse, symmetric matrices from various domains (> 1M non-zeros) e.g., FEM, vision (TV denoising)

Intel Nehalem X5550: two 4-core chips, 2.66Ghz

- How much bandwidth is saved?
- How does that translate into performance gain?
- What is the effect of separator quality?

Representation Footprint

How much could we save?

> 1.5x saving with blocking

more (~3x) with precision reduction

Memory Access (MBytes)

Matrix	CSR/dbl	HDB/dbl	HDB/singl
2d-A (1 <i>M rows, 50M nnz</i>)	80	56	36
3d-A (1 <i>M rows, 69M nnz</i>)	103	67	43
af_shell10 (1.5M rows, 53M nnz)	657	313	193
audikw_1 (.9M rows, 78M nnz)	951	426	261
bone010 (1M rows, 72M nnz)	880	404	251
ecology2 (1M rows, 50M nnz)	80	56	36
nd24k (<i>72K rows, 29M nnz</i>)	346	164	106
nlpkkt120 (<i>3.5M rows, 97M nnz</i>)	1,212	589	367
pwtk (3.5M rows, 97M nnz)	143	65	40

Bandwidth Analysis

Matrix: bone010 - 1M rows, 72M nonzeros

Performance Analysis: Median

Effects of Separator Quality

^{*}Matrix: audikw_1 - 1M rows, 78M nonzeros

When is precision reduction viable?

low-precision "raw" data

use approximate answers in intermediate steps to derive full-precision final solutions

Combinatorial Multigrid (CMG) Solvers

each diagonal element is larger than the sum of the absolute values of other elements in that row

$$Ax = b$$

combinatorial preconditioning

SDD Problem Examples

Data Mining/Recommender

Compute electrical flow

Movie-Subscriber Graph

Optical Coherence Tomography

Compute few eigenvectors

Retina Image

CMG Overview

Improvements Over Seq.

> 7x on 8 cores (max) 5.2x (median)

- hierarchical/recursive solver
- most work: SpMV + vector-vector ops

Take-Home Points

Thank you!

Memory Bandwidth Bottleneck

- Hierarchical Diagonal Blocking (HDB) simple, compact, cache-friendly
- CMG using Low-Precision Guide

 full-precision answer from low-precision hints