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Abstract—Triangle counting and enumeration has emerged
as a basic tool in large-scale network analysis, fueling the
development of algorithms that scale to massive graphs. Most of
the existing algorithms, however, are designed for the distributed-
memory setting or the external-memory setting, and cannot take
full advantage of a multicore machine, whose capacity has grown
to accommodate even the largest of real-world graphs.

This paper describes the design and implementation of simple
and fast multicore parallel algorithms for exact, as well as
approximate, triangle counting and other triangle computations
that scale to billions of nodes and edges. Our algorithms are
provably cache-friendly, easy to implement in a language that
supports dynamic parallelism, such as Cilk Plus or OpenMP,
and do not require parameter tuning.

On a 40-core machine with two-way hyper-threading, our
parallel exact global and local triangle counting algorithms obtain
speedups of 17–50x on a set of real-world and synthetic graphs,
and are faster than previous parallel exact triangle counting
algorithms. We can compute the exact triangle count of the Yahoo
Web graph (over 6 billion edges) in under 1.5 minutes. In addition,
for approximate triangle counting, we are able to approximate
the count for the Yahoo graph to within 99.6% accuracy in under
10 seconds, and for a given accuracy we are much faster than
existing parallel approximate triangle counting implementations.

I. Introduction
As graphs are increasingly used to model and study interactions
in a variety of contexts, there is a growing need for graph
analytics to process massive graphs quickly and accurately.
Among various metrics of interest, the triangle count and related
measures have attracted a lot of recent attention because they
reveal important structural information about the network being
studied. Unsurprisingly, triangle counting and enumeration
has seen applications in the study of social networks [37],
identifying thematic structures of networks [18], spam and
fraud detection [6], link classification and recommendation [58],
joining three relations in a database [38, 40], database query op-
timization [5]—with further examples discussed in [7, 25, 40].

Driven by such applications, several algorithms have been
proposed for the distributed setting (e.g., [2, 16, 21, 42, 53, 59])
and the external-memory setting (e.g., [15, 17, 25, 28, 33, 36,
40]) as graphs of interest were deemed too big to keep in the
main memory of a single computer. The distributed algorithms
are not tailored for a multicore machine, and the external-
memory algorithms typically do not support parallelism (with
the exception of [28, 33]). Today, however, a single multicore
machine can have tens of cores and can support several terabytes
of memory1—capable of storing graphs with tens or even
hundreds of billions of edges. Compared to distributed-memory

1For example, the Intel Sandy Bridge-based Dell R920 can be configured
with up to 40 cores and 6 Terabytes of memory.

systems, communication costs are much cheaper in multicore
systems, leading to performance benefits with a proper design.
Moreover, for graph algorithms, multicores are known to
be more efficient per core and per watt than an equivalent
distributed system.

In this paper, we develop fast and simple in-memory parallel
algorithms for triangle computations. Specifically, we address
the following question: How can we engineer fast multicore
algorithms for triangle counting and enumeration that require
no parameter tuning?

Traditionally, shared-memory parallel programs are written
with explicitly assigning tasks to threads (e.g., using pthreads).
However, for programs where there is no clear way to evenly
split the work among threads, scheduling for good performance
is a big challenge. Triangle computations fall into this category
of programs because the work among vertices is often highly
skewed due to the large variation in the number of potential
triangles incident on each vertex. Therefore, writing efficient
triangle computation code with explicit task management is
generally very difficult. For these reasons, direct adaption of
existing distributed algorithms to the shared-memory setting is
unable to take full advantage of a multicore machine.

Another method for writing shared-memory programs is to
use simple constructs that indicate which parts of the program
are safe to run in parallel, and allow a run-time scheduler to
assign work to threads and perform load balancing on-the-fly.
This approach is known as dynamic multithreading. Using
languages such as Cilk Plus, OpenMP, and Intel Threading
Building Blocks that support dynamic multithreading, one
can write clean programs while letting the run-time scheduler
perform the work allocation and load balancing. With advances
in scheduling, it is now possible to write a wide class of parallel
programs in this framework that are efficient, both in theory
and in practice [12], without having to tune the program to
achieve balanced workloads.

Recognizing these benefits, we design our algorithms in the
dynamic multithreading framework. Here, a parallel computa-
tion can be thought of as a directed acyclic graph (DAG), where
vertices represent instructions and edges represent dependencies
between instructions. This gives an abstraction in which an
algorithm’s description exposes the logical parallelism without
reference to work allocation or threads. In this setting, the
theoretical cost of a program is captured by the total number
of operations performed (known as work or W) and the longest
chain of dependencies (known as depth or D), where W/D
indicates the amount of parallelism available.

In addition to parallelism, the cache behavior of programs
has a significant impact on performance. Writing parallel
programs with good cache behavior has often required expertise.
Because machines differ, this often requires fine-tuning code



Algorithm Work Depth Cache Complexity

TC-Merge O(E3/2) O(log3/2 E) O(E + E3/2/B)
TC-Hash O(V log V + αE) O(log3/2 E) O(sort(V) + αE)

Parallel-PS O(E3/2) O(log5/2 E) O(E3/2/(
√

MB))
TABLE I: Complexity bounds for triangle counting algorithms, where V =
number of vertices, E = number of edges, α is arboricity of the graph, M =
cache size, B = cache line size, and sort(n) = O((n/B) logM/B(n/B)).

or parameters for each individual machine. Even then, it is still
difficult to achieve good cache performance because the memory
system of a modern machine has become highly sophisticated,
consisting of multiple levels of caches and layers of indirection.

To sidestep this complex issue, we design algorithms that
make efficient use of caches without needing to know the
specific memory/cache parameters (e.g., cache size, cache
line size). Such parallel algorithms are known as parallel
cache-oblivious algorithms, as they are oblivious to cache
parameters [9, 20, 52]. Parallel cache-oblivious algorithms
free the programmer from optimizing the cache parameters for
specific machines, as they run efficiently on all shared-memory
machines. These algorithms are analyzed for parallel cache
complexity as a function of the problem size n, the cache size
M, and the cache line size B.

Overall, we aim for algorithms that have plenty of paral-
lelism (low depth) and also low cache complexity, as well as
having a work complexity matching that of the sequential work
complexity (i.e., be work-efficient). We would also like the
good theoretical guarantees of the algorithms to translate into
good performance and scalability in practice.
Contributions. This paper presents fast and simple shared-
memory parallel algorithms for triangle counting, both exact
and approximate, that are able to scale to billions of nodes and
edges. The algorithms take full advantage of parallelism in a
multicore system via dynamic multithreading and are optimized
for the memory hierarchy by being cache-oblivious. Our main
contributions are as follows:
—Parallel Algorithms. We design parallel algorithms for triangle
counting, one which uses merging for intersecting adjacency
lists (TC-Merge) and one which uses hashing for intersection
(TC-Hash). Our algorithms are based on Latapy’s sequential al-
gorithm [34]. We show that the algorithms have good theoretical
bounds in the Parallel Cache Complexity (PCC) model [9, 52].
The work, depth, and cache complexity bounds are shown
in Table I. We extend our algorithms to approximate triangle
counting, directed triangle counting, triangle enumeration, local
triangle counting, and computing clustering coefficients. The
algorithms are easy to implement and do not require parameter
tuning. We also discuss a parallelization of the recent sequential
cache-oblivious triangle enumeration algorithm of Pagh and
Silvestri [40] (Parallel-PS), obtaining the complexity bounds
shown in Table I, which may be of independent interest.
—Performance Evaluation. We conduct extensive empirical
evaluation on a 40-core Intel machine with two-way hyper-
threading as well as a 64-core AMD machine. Our Cilk
Plus implementations of the parallel exact global and local
triangle counting algorithms achieve speedups of 17–50x and
outperform previous algorithms for the same task. On the
large-scale Yahoo Web graph (with over 6 billion edges), our
algorithm computes the triangle count in under 1.5 minutes.
For approximate triangle counting, our parallel implementation
approximates the triangle count for the Yahoo graph to within
99.6% accuracy in under 10 seconds, and is much faster than

existing parallel approximate triangle counting implementations
for a given accuracy.
—Analysis of Cache Behavior. To further understand how
these performance benefits come about, we analyze the cache
performance of our implementations on several graphs, showing
that cache performance is consistent with the theory and that
cache efficiency is crucial for performance.

II. Background and Preliminaries
Let G = (V, E) be a simple, undirected graph. A triangle is
a set of three vertices v1, v2, v3 ∈ V such that the undirected
edges (v1, v2), (v2, v3), and (v1, v3) are present in E. The triangle
counting problem takes an undirected graph G and returns a
count of the number of triangles in G. For triangle listing,
all of the triangles in the graph are output. The triangle
enumeration problem takes an emit function that is called
on each triangle discovery (hence, each triangle must appear in
memory). Algorithms for local triangle counting/listing return
the count/list of triangles incident on each vertex v ∈ V .

Define d(v) to be the degree of vertex v and denote by N(v)
the set of neighbors of v. When clear from context, we also
use V and E to refer to the number of vertices and the number
of edges, respectively, in G.

We represent graphs using the adjacency list format, which
stores for each vertex an array of indices of other vertices that it
has an edge to as well as the vertex’s degree. We assume that the
arrays are stored consecutively in memory. This representation
requires O(V + E) space. We assume, without loss of generality,
that the graph does not have any isolated vertices (they can
be removed within the complexity bounds of the algorithms
we describe). The arboricity α of a graph is the minimum
number of forests its edges can be partitioned into (hence,
α ≥ 1). This is upper bounded by O(

√
E) for general graphs

and O(1) for planar graphs [14]. Furthermore, it is known that∑
(u,v)∈E min {d(u), d(v)} = O(αE).

Parallel Computation. The dynamic multithreading model
represents a parallel computation as a directed acyclic graph
(DAG), where vertices represent instructions and edges repre-
sent dependencies between instructions. In particular, if there
is an edge between vertices u and v, then instruction u must
be executed before instruction v in the computation. The run-
time scheduler has freedom to execute the computation in
any manner as long as it respects the dependencies. To create
parallel tasks in a program, one uses the spawn procedure
(cilk_spawn in Cilk Plus), and to synchronize parallel tasks,
one uses the sync procedure (cilk_sync in Cilk Plus). A
parallel for-loop (cilk_for in Cilk Plus and parfor in the
pseudo-code) indicates that all iterates of the for loop may
execute in parallel (it can be implemented using spawn and
sync procedures). Cilk Plus uses a randomized work-stealing
scheduler [12], where processors that run out of tasks to perform
steal tasks from another randomly chosen thread.

Parallel Cost Model. Algorithms expressed in the dynamic
multithreading model can be analyzed for theoretical efficiency
in terms of work, depth, and cache complexity. The work W
is equal to the number of operations required (the number of
vertices in the computation DAG) and the depth D is equal
to the number of time steps required on the critical path (the
longest directed path in the computation DAG). Then, if P
processors are available, using Brent’s scheduling theorem [11]



we can bound the running time by O(W/P + D), which can be
realized using a randomized work-stealing scheduler [12].

For cache complexity analysis, we use the parallel cache
complexity (PCC) model [9, 52], a parallel variant of the
cache-oblivious model [20]. A cache-oblivious algorithm has
the advantage of being able to make efficient use of the memory
hierarchy without knowing the specific cache parameters
(e.g. cache size, cache line size). In the PCC model, the
cache complexity of an algorithm is given as a function of
cache size M and cache line size B, assuming the optimal
offline replacement policy. This function reflects how the
algorithm behaves for a particular cache/line size, although
this information is unknown to the algorithm. For a parallel
machine, it represents the number of cache misses across all
processors for a particular level (e.g., L2, L3, etc.). An algorithm
is analyzed assuming a single level of cache, but since the
algorithm is oblivious to the cache parameters, the bounds
simultaneously hold across all levels of the memory hierarchy,
which can contain both private and shared caches.

Parallel Primitives. We will make use of the basic parallel
primitives, prefix sum (scan), filter and merge [11]. Prefix sum
(scan) takes an sequence A of length n, an associative binary
operator ⊕, and an identity element ⊥ such that ⊥ ⊕ a = a
for any a, and returns the sequence (⊥,⊥ ⊕ A[0],⊥ ⊕ A[0] ⊕
A[1], . . . ,⊥⊕A[0]⊕A[1]⊕. . .⊕A[n−1]). Filter takes a sequence
A of length n, and a predicate function f , and returns a sequence
A′ of length n′ containing the elements in a ∈ A such that f (a)
returns true, in the same order that they appear in A. Filter
can be implemented using prefix sum, and both require O(n)
work and O(log n) depth [11]. Merge takes sorted sequences A
and B of lengths n and m, respectively, and returns a sorted
sequence containing the union of the elements in A and B.
It can be implemented in O(n + m) work and O(log(n + m))
depth [11]. Merge can be modified to return the intersection of
the elements of two sorted sequences in the same complexity
bounds, and this is the version we use in the paper.

We use scan(n) and sort(n) to denote the cache complexity
of scanning (prefix sum) and sorting, respectively, on an input
of size n. In the PCC model, it has been shown that scan(n) =
O(n/B) and sort(n) = O((n/B) logM/B(n/B)), under the standard
assumption M = Ω(B2), which is readily met in practice. In the
PCC model, scan requires O(n) work and O(log n) depth, and
sort requires O(n log n) work and O(log3/2 n) depth with high
probability2 (or O(log2 n) depth deterministically) [9, 10, 52].
Merging two sorted sequences of lengths n and m requires
O(n + m) work, O(log(n + m)) depth and a cache complexity
of scan(n + m) [9, 10, 52].

III. Triangle Counting
This section describes a conceptual algorithm for triangle
counting that exposes substantial parallelism. In later sections,
we describe how to derive efficient implementations for it.

Our conceptual algorithm follows Latapy’s sequential
compact-forward algorithm [34] for triangle counting. We
extend Latapy’s algorithm because it was shown to perform
well sequentially, and we observe that it is amenable to
parallelization. To count the number of triangles in a graph, the
algorithm performs two main steps, as shown in Algorithm 1.

2We use “with high probability” (whp.) to mean with probability at least
1 − 1/nc for any constant c > 0.

Algorithm 1 High-level parallel triangle counting algorithm
1: procedure Rank-By-Degree(G = (V, E))
2: Compute an array R such that if R[v] < R[w] then d(v) ≤ d(w)
3: parfor v ∈ V do
4: A+[v] = {w ∈ N(v) | R[v] < R[w]}
5: return A+

6: procedure TC(A+)
7: Allocate an array C of size

∑
v∈V |A+[v]|

8: parfor v ∈ V do
9: parfor w ∈ A+[v] do

10: I = intersect(A+[v], A+[w])
11: C[ρ(v,w)] = |I| . ρ(·) gives a unique index in C
12: count = sum of values in C
13: return count

Step 1: Ranking—form a directed graph where each undirected
input edge gives rise to exactly one directed edge. The
ranking helps to improve the asymptotic performance and
ensures each triangle is counted only once.

Step 2: Counting—count triangles of a particular form in the
directed graph formed in the previous step.

For the ranking step, the Rank-By-Degree function on Lines
1–5 takes an undirected graph G, and computes a rank array
R ordering the vertices by non-decreasing degree.3 R contains
unique integers, and for any two vertices v and w, if R[v] < R[w]
then d(v) ≤ d(w). On Lines 3–4, it goes over the vertices of G in
parallel, storing for each vertex v, the higher-ranked neighbors
of v in A+[v]. Finally, it returns the ranked adjacency list A+.

For the counting step, the triangle counting function TC on
Lines 6–13 takes as input a ranked adjacency list A+. An array
C of size equal to the number of directed edges (

∑
v∈V |A+[v]|)

is initialized on Line 7. Each edge (v,w) is assigned a unique
location in C, denoted by ρ(v,w). On Lines 8–11, all vertices
are processed, and for each vertex v, its neighbors w in A+[v]
are inspected, and the intersection between A+[v] and A+[w]
is computed. Each common out-neighbor u corresponds to
a triangle (v,w, u) where R[v] < R[w] < R[u]. The count
of triangles incident on (v,w) is thus set to the size of the
intersection (Line 11). In Line 12, the individual counts are
summed, and finally returned on Line 13.

Two observations are in order: First, because of the ranking
step, all triangles will be counted exactly once. Second, since
the intersection can be computed on all directed (v,w) pairs in
parallel, this algorithm already has abundant parallelism.

We now illustrate these steps with an example (Fig. 1).
Notice the degree of parallelism the algorithm obtains (Fig. 2).
Example. In Figure 1, we show an example graph and the
graph after ranking by degree, which contains directed edges
from lower to higher-ranked vertices. The rank of the vertices
are stored in an array R:

Vertex 0 1 2 3 4
R 1 4 0 3 2

Figure 1 (right) shows the edges after running Rank-By-Degree.
Then, running TC on this graph will compute the set intersec-
tions of multiple pairs, as shown in Fig. 2. Notice that at this
point, the algorithm indicates that these intersections are parallel

3 Various ranking functions can be used, but ordering by degree in the
original graph has it has been shown to perform the best in practice if both
ranking and triangle counting times are included [39]. This ordering heuristic
also leads to good theoretical guarantees for triangle counting [34].
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Fig. 1: Example of a graph (left) and its directed edges after ranking by
degree (right). The contents of A+ are A+[0] = {1, 3}, A+[1] = {}, A+[2] = {1},
A+[3] = {1}, and A+[4] = {1, 3}. The triangles found are (0, 3, 1) and (4, 3, 1),
discovered by intersect(A+[0], A+[3]) and intersect(A+[4], A+[3]).

parfor v ∈ V	


parfor w ∈ A[0]	

parfor w ∈ A[1]	


parfor w ∈ A[2]	

parfor w ∈ A[3]	


parfor w ∈ A[4]	


v = 0	

v = 1	


v = 2	
 v = 3	
 v = 4	


intersect	  (A [0], A [1])	
+ +

intersect	  (A [0], A [3])	
+ +
intersect	  (A [2], A [1])	
+ +

intersect	  (A [3], A [1])	
+ +

intersect	  (A [4], A [1])	
+ +

intersect	  (A [4], A [3])	
+ +
safe to 

run all in 
parallel

Fig. 2: Example of how the parallel triangle counting algorithm performs in
action.

tasks; however, in the context of dynamic multithreading, the
exact combination of tasks that will be run simultaneously
depends on the scheduler. Subsequently, for each of these pairs,
the size of the intersection is recorded in C (e.g., C[ρ(0, 3)] = 1
as |A+[0]∩A+[3]| = 1 and C[ρ(4, 3)] = 1 as |A+[4]∩A+[3]| = 1).

IV. Exact Triangle Counting
This section describes efficient parallel algorithms for exact
triangle counting based on the conceptual algorithm in the
previous section. In particular, we discuss how the ranking and
counting steps are implemented.
A. Ranking

To implement the ranking step, we begin by constructing a rank
array R. Assume that we have the degrees of the vertices stored
in an array D of size V in order of vertex ID (i.e., D[i] is the
degree of the ith vertex). By sorting the vertices by degree and
breaking ties by ID, we can convert this into an array R such
that R contains unique integers, and if R[u] < R[v] then D[u] ≤
D[v]. The sort requires O(V log V) work, O(log3/2 V) depth and
O(sort(V)) cache misses whp., as mentioned in Section II.

Then, given the ranking array R, we look up the rank for
each endpoint of every edge and choose which direction to
retain. In particular, each vertex looks up the rank of each
of its neighbors and applies a parallel filter, keeping only the
higher-ranked neighbors. Each vertex will incur a cache miss
to access the start of its adjacency list, for a total of O(V)
cache misses. The filters require O(E) work, O(log E) depth
and scan(E) cache misses overall. Looking up the rank of the
neighbors requires O(E) work, O(1) depth and O(E) cache
misses overall (since the neighbors can appear anywhere in R).
The following lemma summarizes the complexity of ranking:
Lemma 1 Rank-By-Degree can be implemented in O(V log V+
E) work, O(log3/2 V) depth and O(sort(V) + E) cache misses
whp.

We note that we can obtain a cache complexity O(sort(E))
whp. for ranking (while increasing the work to O(E log E))
by using sorting routines. However we found this to be more
expensive in practice, and furthermore it does not improve the
overall complexity of triangle counting, so we do not elaborate
on the approach here.
B. Counting

We now describe the counting algorithm TC assuming that the
ranked adjacency list A+ has already been computed. The size
of C and the unique locations ρ(v,w) in C for each directed
edge (v,w) can be computed with a parallel scan over the
directed edges. In particular, each vertex v writes the length of
A+[v] into a shared array at location v, and then a scan with the
+ operator is applied to generate the starting offset ov for each
vertex. The offset for element i in A+[v] is computed as ov + i.
The result of the scan also gives the size of C. This requires

O(E) work, O(log E) depth and O(scan(E)) cache misses. On
Line 12, the individual counts in C are added together using a
prefix sum. We now describe two implementations of Lines 10–
11, differing in how the intersect function is implemented.

Algorithm I: Merge-based Algorithm: The first algorithm,
called TC-Merge, implements Line 10 by using a merge on
the directed adjacency lists of v and w. It requires sorting
the adjacency lists as a preprocessing step, which requires
O(E log E) work, O(log3/2 E) depth and O(sort(E) + V) cache
misses whp. Merging the sorted lists gives the intersection
and its size, requiring work linear in the size of the two
lists. Sequentially, the total amount of work done in merging
has been shown to be O(E3/2) [34], and since the merge is
done in the same asymptotic work in parallel, the bound
is the same (hence, it is work-efficient). The depth for
merging is O(log(E3/2)) = O(log E) and cache complexity is
O(scan(E3/2)) = O(E3/2/B) (note that this dominates the cache
complexity of sorting). Accessing the adjacency list for each
edge involves a random access, adding a total of O(E) cache
misses. The complexity of counting dominates the complexity
of ranking, and we have the following theorem:
Theorem 2 Ranking and triangle counting using TC-Merge
can be performed in O(E3/2) work, O(log3/2 E) depth and
O(E + E3/2/B) cache misses whp.

We point out that if B = O(
√

E), then E3/2/B is the
dominant term in the cache complexity. This condition is readily
met in practice for in-memory algorithms since a typical cache
line is 64 bytes, which holds at most 16 edges in a standard
implementation,4 and typical graphs of interest have at least tens
of thousands of edges (the graphs we use have tens of millions
to billions of edges). We conjecture that this condition will
continue to hold in the future when analyzing large graphs (i.e.
graph sizes in terms of number of edges will grow faster than
Ω(B2)). The situation may be different for the external-memory
setting, as was pointed out in [25].

Algorithm II: Hash-based Algorithm: Our second algorithm,
TC-Hash, uses a hash table storing the edges of A+ to compute
the intersection on Line 10 of Algorithm 1. A hash table can
be implemented in parallel to support worst-case O(1) work
and depth queries [35], and so Line 8 can be implemented
in O(min {A+[v], A+[w]}) work by looping over the smaller of
A+[v] and A+[w] and querying the hash table of the other vertex.
Insertion of the edges into the hash tables can be done in O(E)
work, O(log E) depth and O(E) cache misses whp. [35].

Since |A+[v]| ≤ d(v) for all v, this gives an overall
work bound of O(αE) for TC-Hash, where α ≥ 1 denotes
the arboricity of the graph (recall from Section II that

4Compression techniques could be used to store edges more compactly,
however B = O(

√
E) still holds for large graphs.



∑
(u,v)∈E min {d(u), d(v)} = O(αE)). Note that since α = O(

√
E),

this bound is tighter than O(E3/2) and is in fact optimal.
However, each hash table look-up incurs O(1) cache misses,
leading to O(αE) total cache misses. Looking up the adjacency
list of each edge involves a random access, leading to O(E)
cache misses. Computing the size of each intersection can be
done work-efficiently with a parallel scan. Hence, this can be
implemented in O(αE) work, O(log E) depth and a parallel
cache complexity of O(αE).

By putting together the bounds for ranking and counting,
we obtain the following theorem:
Theorem 3 Ranking and triangle counting using TC-Hash
that performs O(V log V + αE) work, O(log3/2 E) depth and
O(sort(V) + αE) cache misses whp.

V. Approximate Triangle Counting
If some amount of error can be tolerated, the running time of
triangle counting can be reduced using approximate counting
algorithms. In this section, we extend the parallel algorithms
for exact triangle counting to approximate triangle counting.
As will be discussed in Section IX, many approximate triangle
counting schemes have been proposed [3, 41, 49, 56, 57, 58, 59],
and the recent colorful triangle counting scheme of Pagh and
Tsourakakis (PT) [41] is one of the most efficient. We will use
the PT colorful triangle counting scheme to develop parallel
and cache-oblivious approximate triangle counting algorithms.

Algorithm 2 Pagh-Tsourakakis Sampling
Input: a graph G = (V, E) and a parameter 0 < p ≤ 1
Output: a sampled subgraph H = (VH , EH) of G.

1: Assign a random color c(v) ∈ {1, . . . ,C} to every vertex v, where
C = d1/pe.

2: Construct EH = {(u, v) ∈ E | c(u) = c(v)} and VH ⊆ V if the vertex
has at least one neighbor.

3: Return H = (VH , EH).

The PT algorithm works by first sampling edges from the
input graph using Algorithm 2. An exact triangle counting
algorithm is then run on the subgraph. If the exact triangle
counting algorithm reports T triangles, then the PT algorithm
reports an estimate of T/p2 triangles.

Pagh and Tsourakakis [41] show that the estimate T/p2

is an unbiased estimate (i.e., its expectation equals the true
triangle count) as each triangle is included in the subgraph
with probability p2 (if two edges in a triangle are present in
the subgraph, then the third edge must also be present). They
also prove that the estimate is tightly concentrated around its
mean for appropriate values of p. Note that a larger p value
leads to higher quality estimates and vice versa.

Using TC-Merge after sampling gives the following lemma:

Lemma 4 For a parameter 0 < p ≤ 1, approximating the
number of triangles in a graph can be done in O(E + (pE)3/2)
work, O(log3/2 E) depth and a parallel cache complexity of
O(scan(E) + pE + (pE)3/2/B) in expectation.

Proof: To form the subgraph, we first convert the adjacency
list representation of the graph to an edge array representation,
which is an array of length E storing pairs of vertices that
have an edge between them. Since the adjacency list repre-
sentation stores the neighbor arrays contiguously in memory,
the conversion can be done using a scan. We then apply a

parallel filter to the edge set keeping only edges with both
endpoints having the same color. We assume that the color
of a vertex can be computed with a hash function, and so
does not involve a memory access. The scan and filter can
be done in O(E) work, O(log E) depth and O(scan(E)) cache
misses. We then remove any singleton (isolated) vertices and
relabel the remaining vertices and the edges so that the vertex
ID’s are in a consecutive range. This “packing” step can be
done using standard techniques involving prefix sums in O(pE)
work and cache misses. Afterward, we convert the edge array
back to the adjacency list representation using prefix sums.
Using TC-Merge on the subgraph and applying Theorem 2 on
a subgraph with an expected number of edges equal to pE
proves the lemma.

The following lemma can be obtained by using TC-Hash
instead of TC-Merge on the subgraph, where VH is the number
of vertices in the subgraph (VH = O(pE) in expectation, since
we remove singleton vertices) and αH ≥ 1 is the arboricity of
the subgraph.
Lemma 5 For a parameter 0 < p ≤ 1, approximating the
number of triangles in a graph can be done in O(E+VH log VH +
pαH E) work, O(log3/2 E) depth and a parallel cache complexity
of O(scan(E) + sort(VH) + pαH E) in expectation.

VI. Extensions

Triangle Enumeration. To adapt TC-Merge and TC-Hash for
triangle enumeration, we only need to modify the implementa-
tion of Line 10 of Algorithm 1 so that emit is called whenever
a triangle is present in memory. Note that since the emit
function may be called in parallel, one must ensure that any
modifications to shared structures are atomic.

For example, to list all the triangles in the graph, we can
initialize a concurrent hash table, and have the emit function
add the triangle to the hash table when it finds one.5 With a
good hash function and large enough hash table, the probability
that two triangles hash to the same location is small, and hence
memory contention will be small. After all triangles are added,
then one can write out the contents of the hash table.

Without accounting for the cost of emit (consistent with
the analysis in [40]), which varies with the application, the
complexity is the same as that of exact triangle counting.

Directed Triangle Counting and Enumeration. Triangle
computations on directed graphs have also attracted recent
interest [21, 48]. The goal is to count triangles of different
configurations of directed edges. For example, the GraphLab
directed triangle counting implementation [21] counts four
types of triangles: in-, out-, through and cycle triangles. If a
vertex v with two incoming edges participates in a triangle, it
is said to be an in-triangle incident on v. If a vertex v with
two outgoing edges participates in a triangle, it is said to be
an out-triangle incident on v. Finally, if a vertex v with one
incoming edge and one outgoing edge participates in a triangle,
and the final triangle edge forms a cycle, then the triangle is a
cycle triangle incident on v; otherwise it is said to participate
in a through triangle.

We describe how to modify TC-Merge and TC-Hash using

5If threads are explicitly managed then we can initialize a list for each
thread, and whenever a thread finds a triangle it simply adds the triangle to its
list. The lists are then be joined at the end. This approach, however, breaks
the dynamic multithreading abstraction.



Algorithm 1 to count the 4 types of directed triangles described
above. When we symmetrize the graph for the ranking phase, we
also store additional information indicating which direction(s)
the edge appears in the original graph. The array of counts
C on Line 7 is modified to store 4-tuples per entry, where
C[ρ(u,w)] stores the count of each type of triangle incident
on edge (u,w). Then on Lines 10–11, we count the number
of each type of directed triangle to store into C[ρ(u,w)]. The
type(s) of each triangle can be computed locally with constant
work/depth and no memory accesses. Finally, to sum the counts
on Line 12, we perform element-wise sums of the 4-tuples
of C using a prefix sum, and return a single 4-tuple. If the
enumeration variant is instead desired, we can modify emit to
take additional information about the orientation of edges in
the triangle. The work, depth and cache complexity bounds of
Theorems 2 and 3 are preserved for directed triangle counting.

Local Triangle Counting. The local triangle counting problem
takes a graph and returns for each vertex, the number of
triangles incident on it. TC-Merge and TC-Hash as described
in Section IV only count each triangle once, instead of 3 times,
since the ranking phase keeps each edge in only one direction.
So just returning the array of counts C in Algorithm 1 would
not produce the correct answer. Therefore, we first store all of
the triangles in an array using a triangle enumeration algorithm.
To obtain the local counts, we sort the array of triangles, using
the first endpoint of the triangle as the key. After the sort,
the triangles sharing the first endpoint will be in consecutive
order. We can then use standard techniques involving prefix
sum operations to compute the partial local counts per vertex.
We then repeat this procedure (sorting and computing partial
local counts) on the second and third endpoints of the triangles,
and the result will be the local triangle counts for each vertex.
The cost of this method is dominated by sorting the triangles,
and since there are O(αE) triangles, the work is O(αE log E),
depth is O(log3/2 E) and cache complexity is O(sort(αE)) whp.
Including the cost of triangle enumeration using TC-Hash
increases the cache complexity to O(αE + sort(αE)) whp. If
TC-Merge is used, then the work becomes O(E3/2 + αE log E)
and cache complexity becomes O(E + E3/2/B + sort(αE)) whp.

If we assume that an atomic increment operation is
supported with O(1) work and depth, then the bounds can
be improved with the following scheme. In practice, this
assumption can be met, for example, by using x86’s atomic
add instructions and controlling contention at each location.
We create an array of size V to store the local count of each
vertex (initialized to 0). Whenever a triangle is identified in the
triangle counting algorithm, an atomic increment is performed
on the locations in the array corresponding to each of the three
triangle endpoints. Since these locations can be anywhere, each
triangle found causes O(1) cache misses. The total number
of triangles is bounded by O(αE) so if we use TC-Hash
for counting, we obtain an algorithm with O(V log V + αE)
work, O(log3/2 E) depth and O(sort(V) + αE) cache misses
whp. In our experiments, we use TC-Merge for counting as we
found it to perform better in practice, although the theoretical
bounds of local triangle counting become weaker—the work
bound increases to O(E3/2) and cache complexity increases to
O(E3/2/B + αE).

Local triangle counting also works for the directed setting.
In the first method, we can use a directed triangle enumeration
algorithm which gives the type of each triangle. After each sort,

which groups the triangles by a certain endpoint, we can sort
within the groups by triangle type. We can then compute the
sizes of these subgroups as well as the groups using prefix sums.
For the second method, we can store 4-tuples in the global
array of local counts, and atomically increment the appropriate
element(s) in the tuples based on the triangle type(s).

Clustering Coefficients and Transitivity Ratio. The local clus-
tering coefficient [60] for a vertex v is defined to be the number
of triangles incident on v divided by d(v)(d(v)−1)/2 (the number
of potential triangles incident on v). The global clustering
coefficient is the average over all local clustering coefficients.
Both quantities can be computed using the algorithms for local
triangle counting.

The transitivity ratio of a graph is defined to be the ratio of
3 times the number of triangles to the number of length-2 paths
(wedges), which can be computed as

∑
v∈V (d(v)(d(v) − 1)/2).

The number of triangles is already returned by TC-Merge and
TC-Hash and the number of wedges can be computed with a
prefix sum. Hence, the bounds for computing the transitivity
ratio are the same as in Theorems 2 and 3.

VII. Evaluation
We experimentally evaluate how our algorithms perform in
practice, specifically how well they scale with the number of
threads, how fast they are compared to existing alternatives,
and whether they are cache-effective. To this end, we report
and discuss the running times, parallel speedups, and cache
misses for our exact algorithms, as well as the accuracy of our
approximation algorithm versus its running time. Overall, the
results indicate that our algorithms are very fast in practice,
scaling well with the number of cores.

Data. Our input graphs include a variety of real-world networks
from the Stanford Network Analysis Project (SNAP),6 and
several synthetic graphs generated from the Problem Based
Benchmark Suite (PBBS) [51]. We also use the Twitter
graph [32] and the Yahoo Web graph.7 These graphs are
drawn from many fields and have different characteristics,
and many are graphs stemming from social media, where
triangle computations often see applications. The graph sizes
and triangle counts are shown in Table II. We report the number
of undirected edges (i.e., an edge between u and v is counted
once), but our implementations store, in the intermediate
representation, each edge in both directions, so store twice
as many edges. Therefore, we effectively symmetrized all of
the graphs. We also preprocess these graphs to remove self-
loops and duplicate edges.

Input Graph Num. Vertices Num. Edges∗ Num. Triangles
random 100,000,000 491,001,390 24,899,692

rMat 134,217,728 498,586,618 539914
3D-grid 99,897,344 299,692,032 0
soc-LJ 4,847,571 42,851,237 285,730,264
Patents 3,774,768 16,518,947 7,515,023
com-LJ 3,997,962 34,681,189 177,820,130
Orkut 3,072,441 117,185,083 627,584,181

Twitter 41,652,231 1,202,513,046 34,824,916,864
Yahoo 1,413,511,391 6,434,561,035 85,782,928,684

TABLE II: Graph inputs. ∗Number of unique undirected edges.
Environment. We run our experiments on two machines: (1)
a 40-core (with two-way hyper-threading) Intel machine with
4×2.4GHz 10-core E7-8870 Xeon processors (with a 1066MHz

6http://snap.stanford.edu
7http://webscope.sandbox.yahoo.com/catalog.php?datatype=g

http://snap.stanford.edu
http://webscope.sandbox.yahoo.com/catalog.php?datatype=g


Algorithm random rMat 3D-grid soc-LJ Patents com-LJ Orkut Twitter Yahoo

serial-OB

T1 278 298 133 24.52 6.23 18.15 95.4 – –
Green et al.

T40h 6.92 9.54 3.66 2.55 0.31 1.61 17.98 – –
GraphLab

T40h 58.0 56.1 51.3 3.45 1.7 2.33 5.7 178.7 –

TC
-M

er
ge T1 106 155 60.4 15.2 3.22 10.7 94.1 2680 1740

T40h 3.13 3.89 1.75 0.49 0.079 0.389 1.92 55.9 77.7
T1/T40h 33.9 39.8 34.5 31.0 40.8 27.5 49.0 47.9 22.4

TC
-H

as
h T1 193 279 107 27.5 6.92 19.5 158 4850 2960

T40h 5.33 7.21 3.25 0.931 0.198 0.723 3.3 93 104
T1/T40h 36.2 38.7 32.9 29.5 34.9 27.0 47.9 50.2 28.5

TC
-L

oc
al T1 119 166 64.9 17.3 3.72 12.2 101 2900 2090

T40h 3.28 3.99 1.76 0.639 0.088 0.397 2.09 163 90.7
T1/T40h 36.3 41.6 36.9 27.1 42.3 30.7 48.3 17.8 23.0

TABLE III: Triangle counting times (seconds) on the Intel machine: T1 is
single-thread time; T40h the time on 40 cores with hyper-threading; and T1/T40h
the parallel speedup.

bus and 30MB L3 cache) and 256GB of main memory, and
(2) a 64-core AMD machine with 4 × 2.4GHz 16-core 6278
Opteron processors (with a 1600MHz bus and 16MB L3 cache)
and 188GB of main memory. Most of the reported results are
obtained from the Intel machine. We also report some results
on the AMD machine, showing that our algorithms exhibit the
same performance trends on different machines. The codes use
Cilk Plus to express parallelism. We compile all of our code
with the g++ compiler version 4.8.0 (which supports Cilk Plus)
with the -O2 flag.
A. Implementation

In our implementations, we use the parallel primitives prefix
sum, filter and sort, from the Problem Based Benchmark Suite
(PBBS) [51], which are all cache-oblivious. The parallel sort
is an implementation of the sample sort described in [10]. All
of our implementations are lock-free.

In our implementations of Algorithm 1, the for-loop on
Line 3 and nested parallel for-loops on Lines 8 and 9 use the
cilk_for construct. Note that already, the counting code has
abundant parallelism (a lot more than the number of processors
available) because all of the intersect calls are made in
parallel (Lines 10–11 of Algorithm 1). Consequently, for TC-
Merge, it suffices for each intersect to use a sequential
merge; making the merge parallel would not improve the
speedup as we have experimentally confirmed. Each merge
terminates when one of the lists has been fully traversed. For
TC-Hash, we use a lock-free concurrent hash table based on
linear probing [50]. Before counting, each vertex creates a
hash table of its neighbors in A+[v]. During counting, which
intersects A+[v] and A+[w] for each directed edge (v,w), we
loop through the smaller adjacency list and query the table of
the vertex with the larger adjacency list. Again, due to abundant
parallelism in the nested parallel for-loop, we perform the hash
table look-ups for each intersect sequentially, as we did not
get any speedup from parallelizing it.
B. Exact Triangle Counting

The first set of experiments is concerned with exact triangle
counting. The times on the Intel machine are shown in Table III,
and the times on the AMD machine are shown in Table IV.
The times include both ranking and counting, and are based on
a median of three trials. We also report the parallel speedup by
dividing the time on a single thread by the parallel time (40

Algorithm random rMat 3D-grid soc-LJ Patents com-LJ Orkut Twitter Yahoo

TC
-M

er
ge T1 188 283 72.4 20.2 4.29 14.3 122 3730 2420

T64 4.93 6.18 2.68 0.81 0.155 0.623 2.67 78.9 100
T1/T64 38.1 45.8 27.0 24.9 27.7 23.0 45.7 47.3 24.2

TC
-H

as
h T1 274 416 184 33.4 11.1 23.8 173 6050 4340

T64 8.26 12.0 4.95 1.39 0.321 1.12 4.24 133 183
T1/T64 33.2 34.7 37.2 24.0 34.6 21.3 40.8 45.5 23.7

TC
-L

oc
al T1 168 268 79.1 24.5 5.3 17.2 134 4100 4060

T64 5.29 6.26 2.65 0.886 0.172 0.628 3.15 164 152
T1/T64 31.8 42.8 29.8 27.7 30.8 27.4 42.5 25.0 26.7

TABLE IV: Triangle counting times (seconds) on the AMD machine: T1 is
single-thread time; T64 the time on 64 cores; and T1/T64 is the speedup.

cores with hyper-threading for the Intel machine and 64 cores
for the AMD machine). For some graphs, we obtain a speedup
factor of over 40 on the Intel machine due to the effects of
hyper-threading. Overall, the times on the Intel machine are
faster than on the AMD machine, but the parallel speedups
are comparable. Later, we discuss parallel performance of our
algorithms compared with recent parallel/distributed algorithms.

Several things are worth discussing: First, our single-
threaded performance is competitive with existing implementa-
tions. To see whether our implementations incur high overhead
due to parallelization, we run the Ortmann and Brandes serial
implementations (serial-OB) [39] on the same set of graphs
and report the running time for their best implementation on
each input on the Intel machine (Table III). We do not have
their times on the Twitter and Yahoo graphs, as we could
not run their implementations on them. When running single-
threaded, our implementation is faster than theirs, and their
fastest implementation is also a variant of the compact-forward
algorithm. Their paper includes a comprehensive evaluation of
other serial algorithms, which are described in Section IX.

Second, both TC-Merge and TC-Hash obtain very good
speedups on all graphs, between 22–50x on 40 hyper-threaded
cores, with TC-Merge having an edge over TC-Hash. For further
detail, Figure 3 shows the running time versus the number of
threads for several graphs on the Intel machine. We see that
both implementations scale well as the number of threads is
increased. We also observe that TC-Merge is faster than TC-
Hash for all thread counts (by a factor of 1.3–2.5x). The trends
are similar on the AMD machine, with TC-Merge again being
faster than TC-Hash, although the absolute running times are
slower than on the Intel machine.

We had difficulty isolating the benefit of hyper-threading
on the Intel machine as we did not have root access to disable
hyper-threading. We did run the experiments using only 40
threads; however, this does not guarantee that the threads are
assigned to distinct cores. We found the hyper-threaded running
times to be about 40–50% faster than these times on average
over all inputs.

Third, for both implementations, usually the majority of the
time is spent inside counting. We show the breakdown of the
parallel running times for the two implementations on the Intel
machine in Figure 4. We observe that ranking usually takes
a small fraction of the total time. For most of the real-world
graphs (except Patents), the time for ranking in TC-Merge is
at most 10%, although it is higher for the synthetic graphs
(as high as 48% for the 3D-grid graph). This is because the
number of potential triangles is much lower in our synthetic
graphs, so the fraction of time spent in the counting portion of
the computation is lower. For TC-Hash, at most 25% of the
time is spent in ranking. We also measure the time for inserting
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Fig. 3: Times in seconds (vertical axis) for exact triangle counting (TC-Merge and TC-Hash) on soc-LJ (left), com-LJ (center), and Orkut (right) as the number
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component for TC-Merge (left), TC-Hash (center), and TC-Approx with p = 1/25 (right).

Algorithm soc-LJ Patents com-LJ Orkut
TC-Merge (L3 misses) 126M 58M 87M 762M
TC-Hash (L3 misses) 217M 90M 150M 1.2B

TC-Merge (L2 misses) 301M 134M 215M 1.4B
TC-Hash (L2 misses) 432M 182M 314M 1.8B

TC-Merge (ops) 2.54B 153M 1.7B 15.8B
TC-Hash (ops) 2.58B 164M 1.7B 18.4B

TABLE V: L2 and L3 cache misses and work for intersection (ops).

the edges into the hash tables, and observe that for most of the
real-world graphs this step takes longer than ranking, but less
time than counting. For most of the real-world graphs (except
Patents), this step also takes at most 25% of the total time.

Fourth, despite the bounds, in practice, TC-Hash performs
about the same amount of work as TC-Merge—but, as predicted
from the theoretical bounds, TC-Hash incurs many more cache
misses than the TC-Merge. We show the number of L2 and L3
cache misses for our two algorithms on several input graphs in
Table V. The numbers are collected from a 32-core (with two-
way hyper-threading) Intel Nehalem machine with 8×2.27GHz
Intel X7560 Xeon processors (with a 1066 MHz bus and 24MB
L3 cache, and 256KB L2 cache per core), since we did not have
root access on the 40-core Intel machine. The cache misses
reported are for an execution using all hyper-threads; however,
we found the cache misses for all thread counts to be similar.

We also report the total number of operations inside
intersect for each implementation. For TC-Merge, the num-
ber of operations is computed by the number of comparisons
done in the merge between elements in the adjacency lists. For
TC-Hash, the number of operations is computed by the number
of locations inspected in the hash table, for both insertions
and finds. We observe that TC-Hash performs about the same
amount of work as TC-Merge, but the key differentiating
factor is the number of cache misses. This confirms that cache
efficiency is crucial for algorithm performance.

Parallel Pagh-Silvestri Algorithm. Pagh and Silvestri (PS) [40]
recently present a sequential cache-oblivious algorithm, which
we parallelize and experiment with (more details appear in
Section VIII). We find that our parallel PS implementation
achieves reasonable parallel self-relative speedup; however, it is
orders of magnitude slower than TC-Merge and TC-Hash. When
run sequentially, we also found it to be orders of magnitude
slower than other sequential triangle counting algorithms. This

is because the PS algorithm makes many more passes over
the edges of the graph, and does many sorts, which makes it
expensive in practice. As far as we know, there is no public
implementation of the PS algorithm available. Engineering
the algorithm to run fast in practice, both sequentially and in
parallel, would be an interesting direction for future work.

Comparison with other work: Several parallel triangle counting
algorithms for distributed-memory have been proposed, and
run on recent machines with comparable specifications to ours.
Arifuzzaman et al. [2] propose PATRIC, which is an MPI-based
parallel algorithm based on a variant of the node-iterator algo-
rithm. Using 200 processors, they require 9.4 minutes to process
the Twitter graph. Park and Chung [42] propose a MapReduce
algorithm for counting triangles, which requires 213 minutes
to process the Twitter graph on a cluster server with 47 nodes.
They show that their algorithm outperforms the MapReduce
algorithms of Cohen [16] and Suri and Vassilvitskii [53]. The
MapReduce triangle enumeration algorithm of Park et al. [43]
takes several hours on the Twitter graph, although they are
solving the more expensive task of enumerating all triangles
instead of just counting them. GraphLab implements triangle
counting using MPI, and achieves better performance than the
other algorithms—they process the Twitter graph in 1.5 minutes
using 64 16-core machines [21]. In contrast to the distributed-
memory algorithms, we are able to process Twitter in under a
minute using TC-Merge on a single 40-core machine. We note
that while our algorithm is much faster than the distributed-
memory algorithms, ours is constrained to graphs that fit in
the memory of a single machine.

We also compare with the implementations of Green et
al. [23], the fastest in-memory implementations of triangle
counting that we are aware of. We report the parallel time
on the Intel machine for their fastest implementation per
graph in Table III for the graphs which we could run their
implementations on. We note that their times do not include
the time for sorting the edges per vertex (required for merging),
although this would be a small fraction of the total time for
most graphs. In parallel, our algorithm TC-Merge is 2–9 times
faster than their fastest algorithm. Their algorithms are parallel
versions of the node iterator algorithm without any ordering
heuristic, and uses merging for intersection. Therefore their



algorithms take O(
∑

v∈V (d(v)2 +
∑

w∈N(v) d(w))) work, which
in general is higher than the work of our algorithms. We
believe the difference in empirical performance between their
algorithms and ours is largely due to the algorithmic difference.
They also perform load balancing by estimating the work
per vertex and dividing vertices and edges among threads
appropriately, whereas we take the simpler approach of leaving
the scheduling to the run-time system, which we found to
work well in practice. In addition, we compare with running
GraphLab on a single machine (the 40-core Intel machine)
and report the times in Table III for all of the input graphs
except Yahoo, which caused their program to thrash. We found
it to be several times slower than our implementations as well
as the implementations of Green et al. [23], as the GraphLab
implementation is designed for distributed-memory using MPI,
which has additional overheads when run on a single machine.

We note that there has been recent work showing that hash-
based joins are usually better than sort-merge-based joins on
multicores [4]. However, the setting of this work is that only
two tables are joined and hence only a single join needs to be
performed. Thus, the cost for sorting and hash table insertions
dominate the cost. In contrast, in triangle computations each
vertex participates in many intersections, but the sorting and
hash table insertions for each vertex only needs to be done once,
so this preprocessing cost is amortized over all of the subsequent
intersections. Another difference is that for a single hash-based
join, the elements of the smaller set are inserted into a hash
table, with the elements from the larger set querying it, while
to obtain good complexity bounds for triangle computations,
the elements from the smaller adjacency list are queried in the
hash table of the vertex with a larger adjacency list. Therefore,
the conclusion of [4] does not directly apply to our context.
C. Approximate Triangle Counting

The previous section showed that TC-Merge is fast and scales
well with the number of threads. In this section, building on
TC-Merge, we study our parallel approximate triangle counting
implementation, which sparsifies the input graph using the
colorful triangle counting scheme of Pagh and Tsourakakis [41],
and applies TC-Merge on the sampled subgraph. We refer to this
algorithm as TC-Approx. In our implementation, we combine
the ranking step with the subgraph creation step to improve
overall performance. In addition, we operate directly on the
adjacency list representation, and have each vertex separately
apply a filter on its edges, instead of converting to the edge array
representation and back as described in Section V. While this
adds an extra O(V) term to the cache complexity, it performs
better in practice as less work is performed.

The times on the 40-core Intel machine for p = 1/25 and
p = 1/10 are shown in Table VI. The times include sampling
edges from the original graph, and performing ranking and
counting on the sampled subgraph. The reported times are
based on an average of 10 trials, and the average error and
variance of the estimates are also reported. We observe that the
times are much lower than those for exact triangle counting,
and the error and variance of the estimates are very small
and well-controlled. For graphs where the number of edges
is much larger than the number of vertices, the speedup of
TC-Approx over TC-Merge in parallel is significant (28.7x
for Orkut and 23.3x for Twitter with p = 1/25), although for
sparser graphs the savings is not as high. For the real-world

TC-Approx random rMat 3D-grid soc-LJ Patents com-LJ Orkut Twitter Yahoo

p
=

1/
25

T1 43.5 47.8 30.1 1.39 1.05 1.11 2.64 42.4 300
T40h 1.38 1.54 0.95 0.04 0.031 0.033 0.067 2.4 9.1

Err.(%) 0.48 3.06 0.0 0.31 0.99 0.48 0.23 0.1 0.39
σ2 0.003 0.11 0.0 0.001 0.014 0.003 0.0 0.0 0.002

p
=

1/
10

T1 56.5 62.3 40.1 1.77 1.22 1.39 4.05 79.4 350
T40h 1.6 1.77 1.11 0.05 0.036 0.042 0.1 5.88 14.5

Err.(%) 0.19 0.8 0.0 0.34 0.38 0.4 0.17 0.12 0.18
σ2 0.0 0.007 0.0 0.002 0.003 0.001 0.0 0.0 0.0

TABLE VI: Times (seconds) and accuracy for approximate triangle counting
on the Intel machine for p = 1/25 (top) and p = 1/10 (bottom). T1 indicates
single-thread time, and T40h indicates the time on 40 cores with hyper-threading.
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graphs, the average error is less than 1% for a sampling factor
of p = 1/25.

Figure 4 (right) shows the breakdown of the parallel running
time on the Intel machine of TC-Approx for p = 1/25. The
time spent on computing the subgraph and ranking is a large
fraction of the total time (at least 80% for all graphs except
for the Twitter graph) because all of the edges are inspected.
In contrast, the time spent on counting is a small fraction of
the overall time for most graphs because there are much fewer
edges in the sampled subgraph than in the original graph.

Figure 5 shows the parallel running time of TC-Approx
relative to TC-Merge on the Intel machine as a function of the
parameter p for several graphs. Overall, the time goes up as p
increases, as this corresponds to a larger sample of edges.

Comparison with other work: Our algorithm is much faster
than the multicore algorithm for approximate triangle counting
by Rahman and Al Hasan [45]. We tested our algorithm on
the Wikipedia-2007-02-06 graph8 that they report times for
(which has 3.566 million vertices and 42.375 million undirected
edges), and on 16 threads our approximate counting algorithm
obtains a 99.5% accuracy in 0.13 seconds (for p = 1/10),
while they require 10.68 seconds to achieve 99.07% accuracy
using 16 threads. We also note that our exact algorithm runs
in 1.45 seconds using 16 threads on the same graph, faster
than their approximate algorithm. The machines used in both
cases are comparable, but even after adjusting for any small
differences, we would still be significantly faster. Recent work
has extended wedge sampling to the MapReduce setting [29].
Their experiments use 32 4-core machines with hyper-threading,
and they show that the overhead of MapReduce in their
algorithm is already 225 seconds, and require about 10 minutes
on the Twitter graph, which is slower than our parallel times
for exact counting using 40 cores shown in Table III. Papers
for other approximate algorithms [41, 57] do not have parallel
running times, so we are unable to perform a comparison.

8http://www.cise.ufl.edu/research/sparse/matrices/

http://www.cise.ufl.edu/research/sparse/matrices/
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Fig. 6: Distribution of local triangle counts (log-log scale), showing local triangle count (horizontal axis) vs. the number of vertices with that count (vertical axis).

D. Local Triangle Counting

We have also implemented a parallel algorithm for local triangle
counting (TC-Local). For this algorithm, we modify TC-Merge
to keep a count for every vertex in the graph. To keep the
algorithm lock-free while respecting the dynamic multithreading
abstraction, we use an atomic add (using the x86 atomic
instruction xadd) to a global array of local counts when a
triangle is found. We use the following optimization to reduce
work/contention: for a triangle discovered by looping over
vertex v and vertex w ∈ A+[v] with a third vertex being
u ∈ A+[v]∩A+[w], we atomically increment the count of u when
it is discovered; for the second endpoint (w), we atomically
add the count (if nonzero) after the intersection A+[v] ∩ A+[w]
is finished, and for the first endpoint (v), we atomically add the
count (if nonzero) after all merges with neighbors are finished.

Our experiments show that TC-Local also scales well with
the number of cores. Tables III and IV show the times for local
triangle counting (TC-Local) on the Intel machine and the AMD
machine, respectively. As expected, it is slightly slower than
global triangle counting because whenever a triangle is found,
an atomic increment to a global array is performed (which
likely involves a cache miss). Compared to TC-Merge, on 40
cores with hyper-threading on the Intel machine TC-Local is at
most 30% slower for most graphs, but almost 3 times slower
for the Twitter graph possibly due to contention with the atomic
increment (Twitter has many high-degree vertices). TC-Local
achieves 17–48x speedup over all of the inputs. The trends on
the AMD machine are similar, although the absolute running
times are slower.

As a simple application, we extend the analysis of
Tsourakakis [55] to much larger graphs. Tsourakakis observes
that in real-world graphs the relationship between local triangle
count and the number of vertices with such a count follows
a power law [55], though the graphs used were much smaller
than our input graphs. In Figure 6, we plot the relationship in
log-log scale for the larger real-world input graphs and confirm
that this relationship does indeed quite closely resemble a power
law. Due to the efficiency of our algorithm, we are able to
generate such plots for some of the largest publicly-available
graphs in just a few minutes.

VIII. Parallelization of the Pagh-Silvestri Algorithm
Pagh and Silvestri [40] recently describe a sequential cache-
oblivious algorithm for triangle enumeration with an expected
cache complexity of O(E3/2/(

√
MB)). In this section, we review

their sequential algorithm and then show how to parallelize it.
Their algorithm uses the edge array representation of the graph,
which uses an array of length E storing pairs of vertices that
have an edge between them.

Pagh and Silvestri first show that enumerating all triangles
containing a given vertex v can be done with O(sort(E)) cache

misses. They do this by (1) finding all of v’s neighbors via a
scan and sorting them lexicographically, (2) sorting the edge
array by the source vertex and intersecting it with v’s neighbors
to get the outgoing edges of v’s neighbors, and (3) sorting the
result of step 2 by target vertex and intersecting it with v’s
neighbors to get all edges with both endpoints in v’s neighbor
set. The result of this is all the triangles incident on v. Since
these operations are known to be implementable in a parallel
and cache-oblivious manner, we have the following lemma:
Lemma 6 There is an algorithm for enumerating all triangles
incident on a vertex v that requires O(E log E) work, O(log3/2 E)
depth, and O(sort(E)) cache misses whp.

However, naively using this for each vertex is too costly, and
hence their algorithm only uses this step for high-degree vertices
and then uses a novel coloring scheme to recursively solve
the problem on subgraphs. Using their definitions, a triangle
(u, v,w) satisfies the (c0, c1, c2) coloring if c(u) = c0, c(v) = c1
and c(w) = c2 where c is the coloring function. An edge
(u, v) is compatible with a coloring (c0, c1, c2) if (c(u), c(v)) ∈
{(c0, c1), (c1, c2), (c0, c2)}. The Pagh-Silvestri (PS) algorithm is
a recursive algorithm with 3 steps:

Algorithm 3 Pagh-Silvestri (PS) algorithm
procedure PS-Enum(G = (V, E), (c0, c1, c2))

(1) For each high-degree vertex (degree at least E/8), enumerate all
triangles satisfying the (c0, c1, c2) coloring, and construct G′ by
removing these high-degree vertices.

(2) On G′, assign new colorings to the vertices by adding a random
bit to its least significant position in its current coloring.

(3) Recursively call PS-Enum on G′ on the 8 colorings in (c′0, c
′
1, c
′
2) ∈

{2c0−1, 2c0}×{2c1−1, 2c1}×{2c2−1, 2c2}, where each subproblem
contains only compatible edges.

The algorithm is initially called on the original edge set E
with a coloring (1, 1, 1), and all vertices assigned a color of 1.

Step 1 applies the subroutine described above to at most
16 vertices, and so requires O(sort(E)) cache misses. Step 2
requires O(scan(V)) cache misses. Pagh and Silvestri show
that each subproblem in step 3 contains at most E/4 edges in
expectation and uses this to show an expected cache complexity
of O(E3/2/(

√
MB)). The work of their algorithm is O(E3/2).

We show how to parallelize each of the three steps of
the PS algorithm. Step 1 requires at most 16 calls to the
subroutine that finds all triangles incident on a vertex, hence
can be done in the bounds stated in Lemma 6. Step 2 can
be implemented with a parallel scan in O(V) work, O(log V)
depth and O(scan(V)) cache misses. The new colors of the
endpoints of the edges can be computed by sorting the edges
by the first endpoint, merging with the array of colors, then
sorting by the second endpoint and doing the same. For each
subproblem in Step 3, generating the subset of edges belonging
to the subproblem can be done with a parallel filter in O(E)



work, O(log E) depth and O(scan(E)) cache misses. As the
expected size of each subproblem is at most E/4, there are
O(log E) levels of recursion whp. This gives an overall depth
of O(log5/2 E) whp. The parallel algorithm requires O(E3/2)
work since every sequential routine that we replace with a
parallel routine has the same asymptotic work bound. The
parallel cache complexity is O(E3/2/(

√
MB)) in expectation as

the cache complexity of the parallel routines match those of
the sequential routines. This gives us the following theorem:
Theorem 7 A parallel version of the PS algorithm can be
implemented in O(E3/2) work, O(log5/2 E) depth and a parallel
cache complexity of O(E3/2/(

√
MB)) in expectation.

While the cache complexity of the parallel PS algorithm
is better than that of TC-Merge and TC-Hash, in practice we
found it to be much slower due to large constants in the bounds,
as discussed in Section VII.

IX. Prior and RelatedWork
Exact sequential algorithms. Sequential algorithms for exact
triangle counting and enumeration have a long history (see,
e.g., [26, 34, 39, 46, 47]). For sparse graphs, of particular inter-
est is the line of work starting from Schank and Wagner [47],
who describe an algorithm, called forward, that achieves a
work bound of O(E3/2) with a space bound of O(V + E). The
algorithm, like our algorithms, ranks the vertices in order of
non-decreasing degree, but it populates the neighborhood A+

sequentially while computing the intersection. Improving upon
the constants in the space bounds, Latapy [34] describes an
algorithm compact-forward, on which our algorithms are based.
Both algorithms are sequential and require O(E3/2) work and
O(V + E) space. By using hash tables for intersection, the work
of both algorithms can be improved to O(αE) [14]. Experimen-
tally, Latapy shows that forward and compact-forward yield
the best running time with compact-forward consuming less
space [34], consistent with Schank’s findings [46].

The node-iterator algorithm [46] iterates over all vertices
v ∈ V , and intersects the adjacency lists of each pair of v’s neigh-
bors. This algorithm requires O(

∑
v∈V (d(v)2 +

∑
w∈N(v) d(w))) =

O(Edmax) work and O(V + E) space. Green and Bader describe
an optimization to this algorithm using vertex covers, which
improves its performance in practice [22]. The edge-iterator
algorithm [26] iterates over the edges instead of the vertices. For
each edge, it intersects the adjacency lists of the two endpoints.

Ortmann and Brandes [39] describe a framework for de-
signing triangle listing algorithms and explore many variations
of the previous algorithms. They show that a variant of forward
and compact-forward performs the best in practice.

For a graph with ∆ triangles, Bjorklund et al. [8] give the
best work bounds for triangle listing, requiring roughly O(Vω +

V
3(ω−1)

5−ω ∆
2(3−ω)

5−ω ) work for dense graphs, and O(E
2ω
ω+1 + E

3(ω−1)
ω+1 ∆

3−ω
ω+1 )

work for sparse graphs, where ω is the matrix multiplication
exponent (ω ≈ 2.3729, using the current-best algorithm [61]).

Triangle counting, but not listing, can also be solved using
matrix multiplication in O(Vω) work [26]. For sparse graphs,
this can be improved to O(E

2ω
ω+1 ) [1]. Other algorithms and

variants can be found in [34, 39, 46] and the references therein.
Exact parallel algorithms. There has been recent work on adapt-
ing sequential triangle counting/listing/enumeration algorithms
to the parallel setting. Several algorithms have been designed

for distributed-memory using MapReduce [16, 42, 43, 53, 59].
Arifuzzaman et al. describe a distributed-memory algorithm
using MPI [2], and GraphLab also contains an MPI implemen-
tation [21]. A multicore implementation of the node-iterator
algorithm is presented by Green et al. [23]. Triangle counting
has also been implemented on the GPU [24, 62].
I/O complexity of triangle computations. Various triangle
counting/listing/enumeration algorithms have been designed
for I/O efficiency, either in terms of disk accesses or cache
misses. Triangle enumeration can be computed by using a
natural join of three relations using O(E3/(M2B)) I/O’s [40].
An external-memory version of compact-forward was described
by Menegola [36], requiring O(E + E3/2/B) I/O’s. An external-
memory version of node-iterator was described by Demen-
tiev [17], requiring O((E3/2/B) logM/B(E/B)) I/O’s. Chu and
Cheng [15] describe an algorithm using graph partitioning with
an I/O complexity O(E2/(MB) + ∆/B), where ∆ is the number
of triangles in the graph. Their algorithm requires that each
partitions fits in memory, that V ≤ M, and that M = Ω(

√
EB).

Later, Hu et al. [25] describe an algorithm achieving the same
I/O complexity of O(E2/(MB) + ∆/B), without the restrictions
of the previous algorithm. These algorithms are designed for
the external-memory model, where the algorithm must be tuned
for the parameters M and B of the specific machine. Recently,
Pagh and Silvestri [40] describe a cache-oblivious algorithm
requiring O(E3/2/(

√
MB)) expected I/O’s (cache misses), which

we describe in Section VIII. They also describe a deterministic
cache-aware algorithm requiring O(E3/2/(

√
MB)) I/O’s (cache

misses) with the requirement M ≥ EΩ(1) [40]. None of the
above algorithms have been parallelized. Kyrola et al. [33] and
Kim et al. [28] present parallel disk-based triangle counting
implementations, which require parameter tuning.
Approximate counting schemes. To speed up triangle counting,
many approximation schemes have been proposed. These do
not work for triangle listing/enumeration, as not all triangles
are even generated. DOULION is among the first approximation
schemes proposed [57]. Pagh and Tsourakakis [41] later give
a more accurate scheme that improves upon DOULION, called
colorful triangle counting, which we describe in Section V.
A recent scheme based on sampling wedges was presented
by Seshadri et al. [49]. Hadoop implementations have been
described for some of these schemes (e.g., [29, 41, 59]).
Several other approximation schemes have been proposed
based on computing eigenvalues of the graph [3, 56, 58]. The
performance of these methods depend on the spectrum of the
graphs. Rahman and Al Hasan recently present approximate
counting algorithms for multicores based on the edge-iterator
algorithm [45], which we compare with in Section VII.
Streaming algorithms. Triangle counting has also been studied
in streaming settings as an alternative means to processing
massive graphs (see, e.g., [5, 6, 13, 19, 27, 30, 31, 44, 54]
among many others).

X. Conclusion
We have described fast parallel cache-oblivious algorithms
for triangle computations, proven complexity bounds for the
algorithms in the Parallel Cache Complexity model, and shown
that they are efficient in practice. We believe that with the
rapid growth in capacity of shared-memory machines, our fast
algorithms will continue to be very useful in the analysis of
triangle structures in large graphs.
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