
Linear-Work
Parallel Set Cover
and Variants Using MaNIS

Kanat Tangwongsan
Carnegie Mellon University

(Joint work with Guy Blelloch and Richard Peng)

Min Set Cover

Min Set Cover

Max Cover

Min Set Cover

Max Cover

Min-Sum Set Cover

Min Set Cover

Max Cover

Min-Sum Set Cover

Facility Location

Min Set Cover

Max Cover

Min-Sum Set Cover

Facility Location

Asymmetric k-Center

Min Set Cover

Max Cover

Min-Sum Set Cover

Facility Location

Asymmetric k-Center
}

Min Set Cover

Max Cover

Min-Sum Set Cover

Facility Location

Asymmetric k-Center
}simple greedy solution

while (not done)
pick highest utility option

Min Set Cover

Max Cover

Min-Sum Set Cover

Facility Location

Asymmetric k-Center
}simple greedy solution

inherently sequential

while (not done)
pick highest utility option

Min Set Cover

Max Cover

Min-Sum Set Cover

Facility Location

Asymmetric k-Center
}simple greedy solution

inherently sequential

while (not done)
pick highest utility option

This Talk:
techniques for parallel approximate greedy algorithms

How to select a maximal collection of nearly non-overlapping sets
in linear work and polylog depth?

MaNIS: Maximal Nearly Independent Set

(Unweighted) Set Cover

3

Instance: elements and sets covering them

S1

(Unweighted) Set Cover

3

Instance: elements and sets covering them

S2S1

(Unweighted) Set Cover

3

Instance: elements and sets covering them

S3S2S1

(Unweighted) Set Cover

3

Instance: elements and sets covering them

S4S3S2S1

(Unweighted) Set Cover

3

Instance: elements and sets covering them

S5S4S3S2S1

(Unweighted) Set Cover

3

Instance: elements and sets covering them

S6

S5S4S3S2S1

(Unweighted) Set Cover

3

Instance: elements and sets covering them

S6

S7

S5S4S3S2S1

(Unweighted) Set Cover

3

Instance: elements and sets covering them

S8

S6

S7

S5S4S3S2S1

(Unweighted) Set Cover

3

Instance: elements and sets covering them

S8

S6

S7

S5S4S3S2S1

(Unweighted) Set Cover

3

Instance: elements and sets covering them

Task: cover all elements using fewest sets

S8

S6

S7

S5S4S3S2S1

(Unweighted) Set Cover

3

Instance: elements and sets covering them

Task: cover all elements using fewest sets

Greedy Set Cover

4

For t = 0, 1, ... until elts all covered
Pick the set that covers the most new elements (say Xt)

S8

S6

S7

S5S4S3S2S1

[Johnson’74, Chvatal’79]

Xt = new elements covered

Greedy Set Cover

4

For t = 0, 1, ... until elts all covered
Pick the set that covers the most new elements (say Xt)

S8

S6

S7

S5S4S3S2S1

[Johnson’74, Chvatal’79]

Xt = new elements covered

Greedy Set Cover

4

For t = 0, 1, ... until elts all covered
Pick the set that covers the most new elements (say Xt)

S8

S6

S7

S5S4S3S2S1

[Johnson’74, Chvatal’79]

Xt = new elements covered

Greedy Set Cover

4

For t = 0, 1, ... until elts all covered
Pick the set that covers the most new elements (say Xt)

S8

S6

S7

S5S4S3S2S1

[Johnson’74, Chvatal’79]

Xt = new elements covered

Greedy Set Cover

4

For t = 0, 1, ... until elts all covered
Pick the set that covers the most new elements (say Xt)

S8

S6

S7

S5S4S3S2S1

[Johnson’74, Chvatal’79]

Xt = new elements covered

Greedy Set Cover

4

For t = 0, 1, ... until elts all covered
Pick the set that covers the most new elements (say Xt)

S8

S6

S7

S5S4S3S2S1

[Johnson’74, Chvatal’79]

Xt = new elements covered

Greedy Set Cover

4

For t = 0, 1, ... until elts all covered
Pick the set that covers the most new elements (say Xt)

S8

S6

S7

S5S4S3S2S1

[Johnson’74, Chvatal’79]

Thm: Greedy is a (ln n + 1)-approximation.
[Johnson’74, Chvatal’79]

Xt = new elements covered

Greedy Set Cover

4

For t = 0, 1, ... until elts all covered
Pick the set that covers the most new elements (say Xt)

S8

S6

S7

S5S4S3S2S1

[Johnson’74, Chvatal’79]

Thm: Greedy is a (ln n + 1)-approximation.
[Johnson’74, Chvatal’79]

Thm: Can’t beat greedy unless P = NP.
[Raz-Safra’97, Feige’98,Alon et al.’06]

Xt = new elements covered

Parallelizing Greedy Set Cover

5

Parallelizing Greedy Set Cover

5

Thm: Faithfully greedy set cover is P-complete.
[Bongiovanni et al.’95, Blelloch et al.’11]

Parallelizing Greedy Set Cover

5

m = sum of set sizes, n = # of elements

Thm: Faithfully greedy set cover is P-complete.
[Bongiovanni et al.’95, Blelloch et al.’11]

Parallelizing Greedy Set Cover

5

Berger, Rompel, and Shor’94
 - (1+ε)(1+ln n)-approx, RNC O(mlog4 m)-work

Rajagopalan and Vazirani’98
 - (2+ε)(1+ln n)-approx, RNC O(mlog2 m)-work

m = sum of set sizes, n = # of elements

Thm: Faithfully greedy set cover is P-complete.
[Bongiovanni et al.’95, Blelloch et al.’11]

Parallelizing Greedy Set Cover

5

Berger, Rompel, and Shor’94
 - (1+ε)(1+ln n)-approx, RNC O(mlog4 m)-work

Rajagopalan and Vazirani’98
 - (2+ε)(1+ln n)-approx, RNC O(mlog2 m)-work

m = sum of set sizes, n = # of elements

Thm: Faithfully greedy set cover is P-complete.
[Bongiovanni et al.’95, Blelloch et al.’11]

Our Result for Set Cover:
(1+ε)(1+ln n)-approximation, O(m)-work, O(log3 m)-depth

Parallelizing Greedy Set Cover

5

Berger, Rompel, and Shor’94
 - (1+ε)(1+ln n)-approx, RNC O(mlog4 m)-work

Rajagopalan and Vazirani’98
 - (2+ε)(1+ln n)-approx, RNC O(mlog2 m)-work

m = sum of set sizes, n = # of elements

Thm: Faithfully greedy set cover is P-complete.
[Bongiovanni et al.’95, Blelloch et al.’11]

Our Result for Set Cover:
(1+ε)(1+ln n)-approximation, O(m)-work, O(log3 m)-depth

Our Main Result:
• Formulation of MaNIS

• O(|E|)-work, O(log2 |E|)-depth algorithm for MaNIS

Idea: Bulk Processing
handling multiple sets simultaneously

6

For t = 0, 1, ... until elts all covered
Pick the set that covers the most new elements (say Xt)

Xt = new elements covered

Idea: Bulk Processing
handling multiple sets simultaneously

6

For t = 0, 1, ... until elts all covered
Pick the set that covers the most new elements (say Xt)

Xt = new elements covered

Idea: Bulk Processing
handling multiple sets simultaneously

6

For t = 0, 1, ... until elts all covered
Pick the set that covers the most new elements (say Xt)

Identify all sets that cover at least (1-ε)|Xt|
and bulk-process them a way that mimics greedy

Xt = new elements covered

Idea: Bulk Processing
handling multiple sets simultaneously

6

Observation:
If |Xt+1| ≤ (1 - ε)|Xt|, then # of rounds is O(log1+ε n).

For t = 0, 1, ... until elts all covered
Pick the set that covers the most new elements (say Xt)

Identify all sets that cover at least (1-ε)|Xt|
and bulk-process them a way that mimics greedy

Xt = new elements covered

Bulk processing these very best sets

7

Given sets covering roughly |Xt| (i.e., between (1-ε)|Xt| and |Xt|)

Want: each set chosen to cover roughly |Xt| new elts.

Bulk processing these very best sets

7

Given sets covering roughly |Xt| (i.e., between (1-ε)|Xt| and |Xt|)

Want: each set chosen to cover roughly |Xt| new elts.

Example 1: lots of sharing

intended behavior: choose one

Bulk processing these very best sets

7

Given sets covering roughly |Xt| (i.e., between (1-ε)|Xt| and |Xt|)

Want: each set chosen to cover roughly |Xt| new elts.

Example 1: lots of sharing

intended behavior: choose one

Bulk processing these very best sets

7

Given sets covering roughly |Xt| (i.e., between (1-ε)|Xt| and |Xt|)

Want: each set chosen to cover roughly |Xt| new elts.

Example 1: lots of sharing

intended behavior: choose one

Example 2: little sharing

intended behavior: choose all

Bulk processing these very best sets

8

(cont’d)

Bulk processing these very best sets

8

(cont’d) PICK:1
if has a small-overlapping sequence

Bulk processing these very best sets

8

(cont’d)

A

PICK:1
if has a small-overlapping sequence

Bulk processing these very best sets

8

(cont’d)

A B

|B \ A| > (1 - δ)|B|

PICK:1
if has a small-overlapping sequence

Bulk processing these very best sets

8

(cont’d)

A B

|B \ A| > (1 - δ)|B|

C

|C \ (A ∪ B)| > (1 - δ)|C|

PICK:1
if has a small-overlapping sequence

Bulk processing these very best sets

8

(cont’d)

A B

|B \ A| > (1 - δ)|B|

C

|C \ (A ∪ B)| > (1 - δ)|C|

REJECT: if retains too few elts2
D E

|D\ (A ∪ B ∪ C) | < (1 - ε)|D|

|E \ (A ∪ B ∪ C) | < (1 - ε)|E|

PICK:1
if has a small-overlapping sequence

MaNIS: Maximal Nearly Independent Set

9

formalizing our intuitions

Input: SETS = collection of sets

-MaNIS(ε, δ) is J = <S1, ... , Sk> ⊆ SETS such thatFor δ ≥ ε,

MaNIS: Maximal Nearly Independent Set

9

formalizing our intuitions

Input: SETS = collection of sets

-MaNIS(ε, δ) is J = <S1, ... , Sk> ⊆ SETS such that

Nearly Independent.1

|Si \ (∪j<iSj)| ≥ (1− δ)|Si|

For δ ≥ ε,

MaNIS: Maximal Nearly Independent Set

9

formalizing our intuitions

Input: SETS = collection of sets

-MaNIS(ε, δ) is J = <S1, ... , Sk> ⊆ SETS such that

Nearly Independent.1

|Si \ (∪j<iSj)| ≥ (1− δ)|Si|

Only “slightly” worse
than greedy

For δ ≥ ε,

MaNIS: Maximal Nearly Independent Set

9

formalizing our intuitions

Input: SETS = collection of sets

-MaNIS(ε, δ) is J = <S1, ... , Sk> ⊆ SETS such that

Nearly Independent.1

|Si \ (∪j<iSj)| ≥ (1− δ)|Si|

Maximal. Each Ri ∉ J satis"es2
covered = S1 ∪ S2 ∪ · · · ∪ Sk

|Ri \ covered| < (1− ε)|Ri|

Only “slightly” worse
than greedy

For δ ≥ ε,

MaNIS: Observations

10

and variants
-MaNIS(ε, δ) is J = <S1, ... , Sk> ⊆ SETS such that

Maximal. Each Ri ∉ J satis"es2
covered = S1 ∪ S2 ∪ · · · ∪ Sk

|Ri \ covered| < (1− ε)|Ri|

For δ ≥ ε,

Nearly Independent.1

|Si \ (∪j<iSj)| ≥ (1− δ)|Si|

MaNIS: Observations

10

and variants

MaNIS needs not be unique

-MaNIS(ε, δ) is J = <S1, ... , Sk> ⊆ SETS such that

Maximal. Each Ri ∉ J satis"es2
covered = S1 ∪ S2 ∪ · · · ∪ Sk

|Ri \ covered| < (1− ε)|Ri|

For δ ≥ ε,

Nearly Independent.1

|Si \ (∪j<iSj)| ≥ (1− δ)|Si|

MaNIS: Observations

10

and variants

MaNIS needs not be unique

small overlaps on average

| ∪i Si| ≥ (1− δ)
�

i

|Si|

-MaNIS(ε, δ) is J = <S1, ... , Sk> ⊆ SETS such that

Maximal. Each Ri ∉ J satis"es2
covered = S1 ∪ S2 ∪ · · · ∪ Sk

|Ri \ covered| < (1− ε)|Ri|

For δ ≥ ε,

Nearly Independent.1

|Si \ (∪j<iSj)| ≥ (1− δ)|Si|

MaNIS: Observations

10

and variants

MaNIS needs not be unique

small overlaps on average

| ∪i Si| ≥ (1− δ)
�

i

|Si|

δ = ε = 0 is maximal set packing

-MaNIS(ε, δ) is J = <S1, ... , Sk> ⊆ SETS such that

Maximal. Each Ri ∉ J satis"es2
covered = S1 ∪ S2 ∪ · · · ∪ Sk

|Ri \ covered| < (1− ε)|Ri|

For δ ≥ ε,

Nearly Independent.1

|Si \ (∪j<iSj)| ≥ (1− δ)|Si|

MaNIS: Observations

10

and variants

MaNIS needs not be unique

small overlaps on average

| ∪i Si| ≥ (1− δ)
�

i

|Si|

δ = ε = 0 is maximal set packing

simple O(|E|)
sequential algo

-MaNIS(ε, δ) is J = <S1, ... , Sk> ⊆ SETS such that

Maximal. Each Ri ∉ J satis"es2
covered = S1 ∪ S2 ∪ · · · ∪ Sk

|Ri \ covered| < (1− ε)|Ri|

For δ ≥ ε,

Nearly Independent.1

|Si \ (∪j<iSj)| ≥ (1− δ)|Si|

How to Compute MaNIS?
Implicit in algorithms from previous work

11

For δ ≥ ε:

How to Compute MaNIS?
Implicit in algorithms from previous work

11

Berger, Rompel, and Shor’94
(also Chierichetti, Kumar, and Tomkins’10) (ε, δ)-MaNIS

RNC O(|E| log3 |E|)-work
on average

For δ ≥ ε:

How to Compute MaNIS?
Implicit in algorithms from previous work

11

Berger, Rompel, and Shor’94
(also Chierichetti, Kumar, and Tomkins’10) (ε, δ)-MaNIS

RNC O(|E| log3 |E|)-work
on average

super-linear work

For δ ≥ ε:

How to Compute MaNIS?
Implicit in algorithms from previous work

11

Rajagopalan and Vazirani’98 (ε, δ)-MaNIS

RNC O(|E| log |E|)-work

Berger, Rompel, and Shor’94
(also Chierichetti, Kumar, and Tomkins’10) (ε, δ)-MaNIS

RNC O(|E| log3 |E|)-work
on average

super-linear work

For δ ≥ ε:

How to Compute MaNIS?
Implicit in algorithms from previous work

11

Rajagopalan and Vazirani’98 (ε, δ)-MaNIS

RNC O(|E| log |E|)-work

Berger, Rompel, and Shor’94
(also Chierichetti, Kumar, and Tomkins’10) (ε, δ)-MaNIS

RNC O(|E| log3 |E|)-work
on average

super-linear work

δ > 1/2

For δ ≥ ε:

How to Compute MaNIS?
Implicit in algorithms from previous work

11

Rajagopalan and Vazirani’98 (ε, δ)-MaNIS

RNC O(|E| log |E|)-work

This Work: simple RNC linear work (ε, δ)-MaNIS

Berger, Rompel, and Shor’94
(also Chierichetti, Kumar, and Tomkins’10) (ε, δ)-MaNIS

RNC O(|E| log3 |E|)-work
on average

super-linear work

δ > 1/2

For δ ≥ ε:

A Simple Linear-Work MaNIS

12

A Simple Linear-Work MaNIS

12

Step 1:
Each set picks a random val ∈ [0, 1]

A Simple Linear-Work MaNIS

12

Step 1:
Each set picks a random val ∈ [0, 1]

0.8

0.90.4

0.1

A Simple Linear-Work MaNIS

12

Step 1:
Each set picks a random val ∈ [0, 1]

0.8

0.90.4

0.1

Step 2:
val(elt) = max{ val(S) : elt ∈ S }

A Simple Linear-Work MaNIS

12

Step 1:
Each set picks a random val ∈ [0, 1]

0.8

0.90.4

0.1

Step 2:
val(elt) = max{ val(S) : elt ∈ S }

A Simple Linear-Work MaNIS

12

Step 1:
Each set picks a random val ∈ [0, 1]

0.8

0.90.4

0.1

Step 2:
val(elt) = max{ val(S) : elt ∈ S }

A Simple Linear-Work MaNIS

12

Step 1:
Each set picks a random val ∈ [0, 1]

0.8

0.90.4

0.1

Step 2:
val(elt) = max{ val(S) : elt ∈ S }

A Simple Linear-Work MaNIS

12

Step 1:
Each set picks a random val ∈ [0, 1]

Step 2:
val(elt) = max{ val(S) : elt ∈ S }

Step 3:
ACCEPT S if > (1-δ) fraction of S has
the same val as S.

A Simple Linear-Work MaNIS

12

Step 1:
Each set picks a random val ∈ [0, 1]

Step 2:
val(elt) = max{ val(S) : elt ∈ S }

Step 3:
ACCEPT S if > (1-δ) fraction of S has
the same val as S.

A Simple Linear-Work MaNIS

12

Step 1:
Each set picks a random val ∈ [0, 1]

Step 2:
val(elt) = max{ val(S) : elt ∈ S }

Step 3:
ACCEPT S if > (1-δ) fraction of S has
the same val as S.

Step 4:
REJECT S if < (1-ε) frac of S remains

A Simple Linear-Work MaNIS

12

Step 1:
Each set picks a random val ∈ [0, 1]

Step 2:
val(elt) = max{ val(S) : elt ∈ S }

Step 3:
ACCEPT S if > (1-δ) fraction of S has
the same val as S.

Step 4:
REJECT S if < (1-ε) frac of S remains

A Simple Linear-Work MaNIS

12

Step 1:
Each set picks a random val ∈ [0, 1]

Step 2:
val(elt) = max{ val(S) : elt ∈ S }

Step 3:
ACCEPT S if > (1-δ) fraction of S has
the same val as S.

Step 4:
REJECT S if < (1-ε) frac of S remains

Step 5:
repeat until empty

A Simple Linear-Work MaNIS

12

Step 1:
Each set picks a random val ∈ [0, 1]

Step 2:
val(elt) = max{ val(S) : elt ∈ S }

Step 3:
ACCEPT S if > (1-δ) fraction of S has
the same val as S.

Step 4:
REJECT S if < (1-ε) frac of S remains

Step 5:
repeat until empty

Theorem:
 O(|E|)-work, O(log2 |E|)-depth algorithm for (ε, δ)-MaNIS

Parallel Greedy Set Cover

13

approximate greedy via bucketing

((1-ε)n, n]

((1-ε)2n, (1-ε)n]

((1-ε)3n, (1-ε)2n]

[1, (1-ε)kn]

Parallel Greedy Set Cover

13

approximate greedy via bucketing

((1-ε)n, n]

((1-ε)2n, (1-ε)n]

((1-ε)3n, (1-ε)2n]

[1, (1-ε)kn]

Parallel Greedy Set Cover

13

approximate greedy via bucketing

((1-ε)n, n]

((1-ε)2n, (1-ε)n]

((1-ε)3n, (1-ε)2n]

[1, (1-ε)kn]

Run MaNIS
rejects

Parallel Greedy Set Cover

13

approximate greedy via bucketing

((1-ε)n, n]

((1-ε)2n, (1-ε)n]

((1-ε)3n, (1-ε)2n]

[1, (1-ε)kn]

Run MaNIS
rejects

Parallel Greedy Set Cover

13

approximate greedy via bucketing

((1-ε)n, n]

((1-ε)2n, (1-ε)n]

((1-ε)3n, (1-ε)2n]

[1, (1-ε)kn]

Run MaNIS
rejects

Parallel Greedy Set Cover
(cont’d)

14

Initial bucketing: linear work

When a set changes buckets, size shrinks by ε

Iterating through buckets:

MaNIS is O(m) = O(sum of set sizes in that bucket)

Total work: Linear in sum of set sizes

Now for a proof sketch....

O(|E|)-work, O(log2 |E|)-depth

Proof’s Overview

16

SETS

ELTS

a bipartite graph view:

Key Lemma:
Each iteration of MaNIS removes a constant
fraction of the edges.

17

Key Lemma:
Each iteration of MaNIS removes a constant
fraction of the edges.

For each set S, WS = “# of edges S responsible for deleting”

17

Key Lemma:
Each iteration of MaNIS removes a constant
fraction of the edges.

For each set S,
if S not accepted: WS = 0

WS = “# of edges S responsible for deleting”

17

Key Lemma:
Each iteration of MaNIS removes a constant
fraction of the edges.

For each set S,
if S not accepted: WS = 0

WS = sum of degrees of S’s elts with same val as S
if S accepted:

WS = “# of edges S responsible for deleting”

17

Key Lemma:
Each iteration of MaNIS removes a constant
fraction of the edges.

For each set S,
if S not accepted: WS = 0

WS = sum of degrees of S’s elts with same val as S
if S accepted:

WS = 1 + 0 + 2 + 1 + 2
WS’ = 0SS’ S’’✓ ✓✗

WS = “# of edges S responsible for deleting”

17

Key Lemma:
Each iteration of MaNIS removes a constant
fraction of the edges.

For each set S,
if S not accepted: WS = 0

WS = sum of degrees of S’s elts with same val as S
if S accepted:

WS = 1 + 0 + 2 + 1 + 2
WS’ = 0SS’ S’’✓ ✓✗

WS = “# of edges S responsible for deleting”Observation:
edges removed ≥

�

S∈SETS

WS

17

Key Lemma:
Each iteration of MaNIS removes a constant
fraction of the edges.

For each set S,
if S not accepted: WS = 0

WS = sum of degrees of S’s elts with same val as S
if S accepted:

WS = 1 + 0 + 2 + 1 + 2
WS’ = 0SS’ S’’✓ ✓✗

Technical Claim:
E[WS] ≥ c · deg(S)

WS = “# of edges S responsible for deleting”Observation:
edges removed ≥

�

S∈SETS

WS

18

Establish that S is accepted Count towards WS

ε deg(S) nodes(1-ε)deg(S) nodes

SETS

ELTS
e1 e2 e3 ep+1 en'+1

...ep

...... S

low-degree high-degree

Technical Claim:
E[WS] ≥ c · deg(S)

18

Establish that S is accepted Count towards WS

ε deg(S) nodes(1-ε)deg(S) nodes

Suppose every node in the low degree group has degree ≤ d, and
 every node in the high degree group has degree > d.

SETS

ELTS
e1 e2 e3 ep+1 en'+1

...ep

...... S

low-degree high-degree

Technical Claim:
E[WS] ≥ c · deg(S)

19

Use low-degree neighbors of S to establish that S is picked

Pr[S accepted]

val(S)1

1

1− ε

d

0.5

Claim: If val(S) ≥ 1 - ε/d, then Pr[S accepted] ≥ 1/2

Technical Claim:
E[WS] ≥ c · deg(S)

20

Use high-degree neighbors to account for WS

Claim: For a high-degree node e, if val(S) ≥ 1 - ε/deg(e) and S is
accepted, then Pr[e has the same value as S] ≥ 1 - ε

Claim: If val(S) ≥ 1 - ε/d, then Pr[S accepted] ≥ 1/2

Technical Claim:
E[WS] ≥ c · deg(S)

20

Use high-degree neighbors to account for WS

Claim: For a high-degree node e, if val(S) ≥ 1 - ε/deg(e) and S is
accepted, then Pr[e has the same value as S] ≥ 1 - ε

val(S)1

deg(e)

(1 - ε)deg(e)/2

1 - ε/deg(e)

contribution of e
at least some constant c

Claim: If val(S) ≥ 1 - ε/d, then Pr[S accepted] ≥ 1/2

Technical Claim:
E[WS] ≥ c · deg(S)

RNC Algorithms via MaNIS

21

RNC Algorithms via MaNIS

21

Min Set Cover

Max Cover

Min-Sum Set Cover

Facility Location

Asymmetric k-Center

}

RNC Algorithms via MaNIS

21

Min Set Cover

Max Cover

Min-Sum Set Cover

Facility Location

Asymmetric k-Center

}

RNC Algorithms via MaNIS

21

Min Set Cover

Max Cover

Min-Sum Set Cover

Facility Location

Asymmetric k-Center

}
(1+ε)(1+ln n)-approx, linear work

(1 - 1/e - ε)-approx, linear work

(4+ε)-approx, linear work

(1.861+ε)-approx, O(nlog n)-work

O(log* n)-approx, work-efficient

RNC Algorithms via MaNIS

21

Min Set Cover

Max Cover

Min-Sum Set Cover

Facility Location

Asymmetric k-Center

}
(1+ε)(1+ln n)-approx, linear work

(1 - 1/e - ε)-approx, linear work

(4+ε)-approx, linear work

(1.861+ε)-approx, O(nlog n)-work

O(log* n)-approx, work-efficient

Common Tool: (ε,δ)-MaNIS in O(|E|)-work, O(log2 |E|)-depth

RNC Algorithms via MaNIS

21

Min Set Cover

Max Cover

Min-Sum Set Cover

Facility Location

Asymmetric k-Center

}
(1+ε)(1+ln n)-approx, linear work

(1 - 1/e - ε)-approx, linear work

(4+ε)-approx, linear work

(1.861+ε)-approx, O(nlog n)-work

O(log* n)-approx, work-efficient

Common Tool: (ε,δ)-MaNIS in O(|E|)-work, O(log2 |E|)-depth

Thank you!

