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Max Cover

Min-Sum Set Cover

Facility Location

Asymmetric k-Center
}simple greedy solution

inherently sequential

while (not done) 
pick highest utility option

This Talk:
techniques for parallel approximate greedy algorithms 

How to select a maximal collection of nearly non-overlapping sets 
in linear work and polylog depth?

MaNIS: Maximal Nearly Independent Set
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4

For t = 0, 1, ...  until elts all covered
Pick the set that covers the most new elements (say Xt)

S8

S6

S7

S5S4S3S2S1

[Johnson’74, Chvatal’79]

Thm: Greedy is a (ln n + 1)-approximation.
[Johnson’74, Chvatal’79]

Thm: Can’t beat greedy unless P = NP.
[Raz-Safra’97, Feige’98,Alon et al.’06]

Xt = new elements covered 
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Parallelizing Greedy Set Cover

5

Berger, Rompel, and Shor’94  
       - (1+ε)(1+ln n)-approx, RNC O(mlog4 m)-work

Rajagopalan and Vazirani’98 
       - (2+ε)(1+ln n)-approx, RNC O(mlog2 m)-work

m = sum of set sizes, n = # of elements

Thm: Faithfully greedy set cover is P-complete.
[Bongiovanni et al.’95, Blelloch et al.’11]

Our Result for Set Cover:
(1+ε)(1+ln n)-approximation, O(m)-work, O(log3 m)-depth

Our Main Result:
• Formulation of MaNIS

• O(|E|)-work, O(log2 |E|)-depth algorithm  for MaNIS
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Observation:
If |Xt+1| ≤ (1 - ε)|Xt|, then # of rounds is O(log1+ε n).

For t = 0, 1, ...  until elts all covered
Pick the set that covers the most new elements (say Xt)

Identify all sets that cover at least (1-ε)|Xt|
and bulk-process them a way that mimics greedy

Xt = new elements covered 
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7

Given sets covering roughly |Xt| (i.e., between (1-ε)|Xt| and |Xt|)

Want: each set chosen to cover roughly |Xt| new elts.

Example 1:  lots of sharing

intended behavior: choose one

Example 2: little sharing

intended behavior: choose all
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(cont’d)

A B

|B \ A| > (1 - δ)|B|

C

|C \ (A ∪ B)| > (1 - δ)|C|

REJECT: if retains too few elts2
D E

|D\ (A ∪ B ∪ C) | < (1 - ε)|D|

|E \ (A ∪ B ∪ C) | < (1 - ε)|E|

PICK:1
if has a small-overlapping sequence
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Input: SETS = collection of sets

-MaNIS(ε, δ) is J = <S1, ... , Sk> ⊆ SETS such that

Nearly Independent.1

|Si \ (∪j<iSj)| ≥ (1− δ)|Si|

Maximal.  Each Ri ∉ J satis"es2
covered = S1 ∪ S2 ∪ · · · ∪ Sk

|Ri \ covered| < (1− ε)|Ri|

Only “slightly” worse 
than greedy

For δ ≥ ε,
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10

and variants

MaNIS needs not be unique

small overlaps on average

| ∪i Si| ≥ (1− δ)
�

i

|Si|

δ = ε = 0 is maximal set packing

simple O(|E|) 
sequential algo

-MaNIS(ε, δ) is J = <S1, ... , Sk> ⊆ SETS such that

Maximal.  Each Ri ∉ J satis"es2
covered = S1 ∪ S2 ∪ · · · ∪ Sk

|Ri \ covered| < (1− ε)|Ri|

For δ ≥ ε,

Nearly Independent.1

|Si \ (∪j<iSj)| ≥ (1− δ)|Si|
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Rajagopalan and Vazirani’98 (ε, δ)-MaNIS

RNC  O(|E| log |E|)-work

This Work: simple RNC linear work (ε, δ)-MaNIS

Berger, Rompel, and Shor’94
(also Chierichetti, Kumar, and Tomkins’10) (ε, δ)-MaNIS

RNC  O(|E| log3 |E|)-work
on average

super-linear work

δ > 1/2

For δ ≥ ε:
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Step 1:
Each set picks a random val ∈ [0, 1] 

Step 2:
val(elt) = max{ val(S) : elt ∈ S }

Step 3:
ACCEPT S if > (1-δ) fraction of S has 
the same val as S.

Step 4:
REJECT S if < (1-ε) frac of S remains

Step 5:
repeat until empty

Theorem:
 O(|E|)-work, O(log2 |E|)-depth algorithm for (ε, δ)-MaNIS
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approximate greedy via bucketing

((1-ε)n, n]

((1-ε)2n, (1-ε)n]

((1-ε)3n, (1-ε)2n]

[1, (1-ε)kn]

Run MaNIS
rejects



Parallel Greedy Set Cover
(cont’d)
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Initial bucketing: linear work

When a set changes buckets, size shrinks by ε

Iterating through buckets:

MaNIS is O(m) = O(sum of set sizes in that bucket)

Total work: Linear in sum of set sizes



Now for a proof sketch....

O(|E|)-work, O(log2 |E|)-depth
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SETS

ELTS

a bipartite graph view:

Key Lemma:
Each iteration of MaNIS removes a constant 
fraction of the edges.
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Key Lemma:
Each iteration of MaNIS removes a constant 
fraction of the edges.

For each set S,
if S not accepted: WS = 0

WS  = sum of degrees of S’s elts with same val as S
if S accepted:

WS  = 1 + 0 + 2 + 1 + 2
WS’  = 0SS’ S’’✓ ✓✗

Technical Claim:
E[WS ] ≥ c · deg(S)

WS = “# of edges S responsible for deleting”Observation: 
# edges removed ≥ 

�

S∈SETS

WS
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Establish that S is accepted Count towards WS

ε deg(S) nodes(1-ε)deg(S) nodes

SETS

ELTS
e1 e2 e3 ep+1 en'+1

...ep ...... ...

...... S

low-degree high-degree

Technical Claim:
E[WS ] ≥ c · deg(S)
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Establish that S is accepted Count towards WS

ε deg(S) nodes(1-ε)deg(S) nodes

Suppose every node in the low degree group has degree ≤ d,  and 
                  every node in the high degree group has degree > d.

SETS

ELTS
e1 e2 e3 ep+1 en'+1

...ep ...... ...

...... S

low-degree high-degree

Technical Claim:
E[WS ] ≥ c · deg(S)
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Use low-degree neighbors of S to establish that S is picked

Pr[S accepted]

val(S)1

1

1− ε

d

0.5

Claim: If val(S) ≥ 1 - ε/d, then Pr[S accepted] ≥ 1/2

Technical Claim:
E[WS ] ≥ c · deg(S)
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Use high-degree neighbors to account for WS

Claim: For a high-degree node e, if val(S) ≥ 1 - ε/deg(e) and S is 
accepted,  then Pr[e has the same value as S] ≥ 1 - ε

Claim: If val(S) ≥ 1 - ε/d, then Pr[S accepted] ≥ 1/2

Technical Claim:
E[WS ] ≥ c · deg(S)
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Use high-degree neighbors to account for WS

Claim: For a high-degree node e, if val(S) ≥ 1 - ε/deg(e) and S is 
accepted,  then Pr[e has the same value as S] ≥ 1 - ε

val(S)1

deg(e)

(1 - ε)deg(e)/2

1 - ε/deg(e)

contribution of e
at least some constant c

Claim: If val(S) ≥ 1 - ε/d, then Pr[S accepted] ≥ 1/2

Technical Claim:
E[WS ] ≥ c · deg(S)
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Min Set Cover

Max Cover

Min-Sum Set Cover

Facility Location

Asymmetric k-Center

}
(1+ε)(1+ln n)-approx, linear work

(1 - 1/e - ε)-approx, linear work

(4+ε)-approx, linear work

(1.861+ε)-approx, O(nlog n)-work 

O(log* n)-approx, work-efficient

Common Tool: (ε,δ)-MaNIS in O(|E|)-work, O(log2 |E|)-depth
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Min Set Cover

Max Cover

Min-Sum Set Cover

Facility Location

Asymmetric k-Center

}
(1+ε)(1+ln n)-approx, linear work

(1 - 1/e - ε)-approx, linear work

(4+ε)-approx, linear work

(1.861+ε)-approx, O(nlog n)-work 

O(log* n)-approx, work-efficient

Common Tool: (ε,δ)-MaNIS in O(|E|)-work, O(log2 |E|)-depth

Thank you!


