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Abstract
Dependence graphs and memoization can be used to efficiently up-
date the output of a program as the input changes dynamically. Re-
cent work has studied techniques for combining these approaches
to effectively dynamize a wide range of applications. Toward this
end various theoretical results were given. In this paper we describe
the implementation of a library based on these ideas, and present
experimental results on the efficiency of this library on a variety
of applications. The results of the experiments indicate that the ap-
proach is effective in practice, often requiring orders of magnitude
less time than recomputing the output from scratch. We believe this
is the first experimental evidence that incremental computation of
any type is effective in practice for a reasonably broad set of appli-
cations.

Categories and Subject Descriptors D.3.0 [Programming Lan-
guages]: General; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms Languages, Performance, Algorithms.

Keywords Self-adjusting computation, memoization, dynamic
dependence graphs, dynamic algorithms, computational geometry,
performance.

1. Introduction
In many applications it can be important or even necessary to ef-
ficiently update the output of a computation as the input changes,
without having to recompute it from scratch. The algorithms com-
munity has made significant progress on data structures that effi-
ciently maintain the output for a specific problem as the input is
updated (see e.g., [16, 19] for surveys). These are referred to as dy-
namic algorithms or data structures. Although there have been hun-
dreds of papers on this topic, and important theoretical advances
have been made, few of the algorithms have been implemented—
the algorithms can be quite complex, and it is hard to compose the
algorithms to make larger components.
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Over the same period of time the programming language com-
munity has made significant progress on run-time and compile-
time approaches that dynamize standard static algorithms. These
approaches are often referred to as incremental computation, and
the idea is to maintain certain information during an execution of
the static algorithm that can be used to efficiently update the out-
put when the input is changed. When incremental computation can
be made to work, it has at least two important advantages over
dynamic algorithms—there is no need to program, debug, doc-
ument, maintain, and augment separate static and dynamic algo-
rithms for every problem, and composability of dynamic versions
follows from composability of their static counterparts.

Important early work on incremental computation included
the work of Demers, Reps and Teitelbaum [17] on static depen-
dence graphs, and Pugh and Teitelbaum [30] on function caching
(also called memoization). Recent work on dynamic dependence
graphs [4, 13], and combining these with memoization (called self-
adjusting computation [2, 3]) has significantly extended the appli-
cability of the approach. In several cases it has been shown that
the algorithms that result from dynamizing a static algorithm are as
efficient as the optimal dynamic algorithm for the problem [6, 8, 2].
The results that have been presented, however, have mostly been
theoretical—they specify asymptotic bounds on update times for a
variety of problems, and prove correctness of the transformations,
but do not analyze the performance of the approach in practice.
Since the approach involves maintaining a complete dependence
graph and memoizing many of the function calls, one indeed might
wonder about the efficiency in practice.

This paper describes an implementation of the approach and
presents experimental performance results. The implementation is
based on a library written in Standard ML (SML). The library
presents a simple interface for a user to instrument static code to
use the approach—this interface is described elsewhere [3].

Section 3 presents the main algorithms and data structures used
in the implementation of the library. These algorithms combine
dynamic dependence graphs and memoization to effectively adjust
computations to changes. Due to interactions between dynamic
dependence graphs and memoization, the combination maintains
some critical invariants and properties to ensure correctness and
efficiency. A key part of the section is a description of how time-
intervals can be used to maintain these properties and invariants.

Section 4 describes the implementation of the algorithms along
with key features that were important in achieving good perfor-
mance, including maintaining a space integrity invariant by eagerly
deleting items from memo tables and the dependence graph struc-
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Figure 1. Memoization versus change propagation for quick-sort (qs). The numbers in parentheses are the first element of the argument list
for the corresponding function call.

ture. An earlier implementation without this feature suffered from
serious memory problems.

Section 5 describes a number of applications including a num-
ber of list primitives (filter, fold, map, reverse, split), two sorting
algorithms (merge-sort, quick-sort), and some more involved al-
gorithms in computational geometry including a number of con-
vex hull algorithms (Graham-scan [20], quick-hull [9], merge-hull,
Chan’s ultimate convex hull [14]), and an algorithm for maintain-
ing the diameter of a point set [33]. These applications are chosen
to span a number of computing paradigms including simple itera-
tion (filter, map, split), accumulator passing (reverse, quick-sort),
incremental result construction (Graham-scan, diameter), random
sampling (fold), and divide-and-conquer (quick-sort, merge-sort,
quick-hull, merge-hull). Section 6 evaluates the effectiveness of
the implementation on these applications. The experiments com-
pare versions of the algorithms instrumented using our library to
standard un-instrumented versions.

Our approach to incremental computation works by first exe-
cuting an initial run of the instrumented version on an initial input.
This initial run builds all the structure needed for supporting up-
dates (e.g., memo tables and dynamic dependences) and generates
the output for the input. The experiments show that the performance
of our instrumented code is often within a reasonably small factor
of the standard un-instrumented algorithm. In the best case the in-
strumented code is 70% slower than the un-instrumented code. In
the worst case it is 25 times slower. On average (over all our ap-
plications), the instrumented code is about 8 times slower than the
un-instrumented code.

After the initial run, the input can be changed and change prop-
agation is used to propagate the changes through the computa-
tion to update the output. This change-and-propagate process can
be repeated as desired. To measure the effectiveness of change
propagation, we study various forms of insertions and deletions
into/from the input. The results demonstrate performance that
greatly improves over re-running the un-instrumented algorithm
from scratch. On average (over all our algorithms), change propa-
gation performs better than running the un-instrumented code from
scratch for inputs of size of greater than 11. For the basic routines
on inputs of size 1,000,000, the time for change propagation is
over 10,000 times faster than running the un-instrumented routine
from scratch. For the computational geometry algorithms on in-
puts of size 100,000, the time for change propagation is between
100 and 3,000 (1,300 on average) times faster than running the
un-instrumented standard algorithm from scratch. The asymptotic
performance as input sizes grow matches the theoretical bounds
proved elsewhere [2].

We note that the cost of garbage collection (GC) can be very
high in our implemention—its allocation pattern is pessimal for a
generational collector. We therefore give numbers both with and
without GC costs.

2. Background
The problem of adjusting computations to changes has been studied
extensively. Much of the previous work took place under the title of
“incremental computation”. The most promising approaches have
been centered on the idea of dependence graphs and memoization.
This section reviews previous work on these techniques, points out
their limitations, and describes how they can be combined. For a
more comprehensive list of references to previous work, we refer
the reader to Ramalingam and Rep’s bibliography [31].

2.1 Dependence Graphs
Dependence-graph techniques record the dependences between
computation data. When the input is changed, a change-propagation
algorithm is used to update the data affected by the change. De-
mers, Reps, and Teitelbaum [17] introduced static dependence
graphs for the purpose of incremental computation. Static depen-
dence graphs are not general purpose, because they do not permit
the change-propagation algorithm to update the dependence struc-
ture of the computation.

Recent work generalized dependence-graph techniques by in-
troducing dynamic dependence graphs (or DDGs) [4]. DDGs rep-
resent the dependences between data and the function that read
them, and the dynamic containment relation between function calls.
Given the DDG of a computation, any data can be changed, and
the computation can be updated by performing change propaga-
tion. The change-propagation algorithm executes function calls that
depend on the changed data, either directly or through changes
made by other function calls. When executed, a function call can
change some previously computed data, whose readers must then
be executed. Further research on DDGs showed that they can sup-
port incremental updates as efficiently as special-purpose algo-
rithms [6, 8]. DDGs can be applied to any functional (side-effect
free) program. The performance of the technique, however, criti-
cally depends on the application.

To see a limitation of DDGs, consider the quicksort algo-
rithm. Figure 1 shows the function-call tree of quicksort with
the inputs I = [11, 7, 4, 17, 5, 19, 9] (on the left) and I ′ =
[11, 7, 4, 17,8, 5, 19, 9] (on the right). With DDGs, the change that
transforms I to I ′ is performed by side-effecting memory to in-
sert the new key 8. The change propagation algorithm re-executes
all the function calls that directly or indirectly depend on the new



key. Figure 1 shows the function calls executed by change propa-
gation (dotted sets). It has been shown that if an element is added
to the end of the input list, the expected time for change propaga-
tion is O(log n) [4]. If the element is inserted in the middle of the
list, however, change propagation will require O(n) expected time,
and if at the beginning it will require from-scratch execution [4].
DDGs give similar update times for many other applications. Even
for simple list primitives such as map, apply, and fold, change
propagation requires linear time on average (over all changes).

2.2 Memoization
The idea behind memoization [10, 26, 27] is to remember function
calls and re-use them when possible. Pugh [29], and Pugh and Teit-
elbaum [30] were the first to apply memoization (also called func-
tion caching) to incremental computation. A key motivation behind
their work was a lack of general-purpose technique for incremental
computation (static-dependence-graph techniques that existed then
applied only to certain computations [29]). As with DDGs, memo-
ization can be applied to any functional (side-effect free) program,
but the performance depends on the problem. Since Pugh and Teit-
elbaum’s work, other researchers investigated applications of mem-
oization to incremental computation [1, 24, 25, 21, 5].

To see how memoization may aid in incremental computation,
consider executing some program with some input I and then with
a similar input I ′. Since the inputs are similar, it may be that
many of the function calls within the computations are applied with
equivalent arguments. Thus, via memoization, many of function
calls from the execution with I can be re-used during the execution
with I ′; this can decrease execution time dramatically. Although
this may sound intuitively true, it holds only for certain programs.
In general, the effectiveness of memoization is limited.

To see a problem with memoization, consider again the quick-
sort algorithm shown in Figure 1. Even though the second input
differs from the first by only one key, many function calls per-
formed with the second input cannot be re-used from the first exe-
cution. In particular, the calls whose input contain the new key (8)
cannot be re-used (Figure 1 highlight such calls). Similar problems
arise in many other applications. Even with simple list primitives
(e.g. map, fold, apply), incremental updates with memoization
require linear time on average (over all changes).

2.3 Combining DDGs and Memoization
There is an interesting duality between memoization and DDGs:
memoization identifies the parts of a computation that remain un-
affected by a change and re-uses their results, while DDGs pinpoint
the parts of the computation that are affected by the change and re-
evaluates them. This duality can be seen concretely in Figure 1,
where function calls not found by memoization and the function
calls executed during change propagation intersect only at changes
that are essential to update the output. Thus by combining these two
techniques, it can be possible to execute only these essential nodes
(marked in black in the figure).

Recent work showed that DDGs and memoization can be com-
bined [2] to achieve this goal for quicksort and more generally for
many other applications. The interface of a library that combines
these techniques and some preliminary experimental results have
also been described [3]. At a high-level, the idea behind the com-
bination is to use memoization when running code during change-
propagation. Since change propagation requires not only the results
but also the DDG of a computation, memoization stores DDGs of
function calls. Although this idea may seem natural, it is complex to
support efficiently and correctly because of the interaction between
DDGs and memoization. Section 3 describes efficient algorithms
for combining DDGs and memoization.

3. Algorithms for Self-Adjusting Computation
This section describes efficient algorithms for combining dynamic
dependence graphs and memoization. These algorithms form the
basis for our implementation described in Section 4. We first
present a high-level description of the combination and then give a
precise specification of the algorithms.

3.1 The Main Ideas
We describe the language primitives for enabling the combination
and give an overview of the algorithms for supporting these primi-
tives and the critical invariants maintained by the algorithms.

The primitives. Our approach relies on extending an existing
language with modifiable references or modifiables for short. Modi-
fiables are memory locations that contain changeable values. Mod-
ifiables are created by mod operations, and written by the write
operations. The content of a modifiable can be accessed by the
read operation. The read operation takes a modifiable and a func-
tion, called the reader, and applies the reader to the contents of the
modifiable. Readers are only restricted to return no values. They
are otherwise unrestricted: they can write to other modifiables and
they can contain other reads. This restriction enables tracking all
data dependences on changeable values by tracking the read op-
erations. Reader functions enable change propagation: when the
contents of a modifiable m changes, the values that depend on
that modifiable can be updated by re-executing the readers of m.
To support memoization, we provide an operation called lift that
takes a function f and two kinds of arguments, called strict and
non-strict. When executed, a lift operation first performs a memo
lookup by matching only the strict arguments. If the memo lookup
succeeds, then the recovered computation is re-used by “adjust-
ing” it to the non-strict arguments using change propagation. If the
memo lookup fails, then the call is executed and the resulting com-
putation is remembered.

The mod, read, write, lift operations can be organized in
a type-safe interface that ensures the correctness of self-adjusting
programs. We present a library that support such an interface else-
where [3]. Since this paper focuses on the internals of the imple-
mentation, we do not address safety issues here.

DDGs, memo tables, and change propagation. As a self-
adjusting program executes, its memo table, denoted by Σ, and
its DDG, can be built by tracking the mod, read, write, and
lift operations. A DDG consists of a set of modifiables V , a
set of reads R, a set of data dependences D ⊆ V × R, and a
containment hierarchy C ⊆ R×R. The data dependences represent
the dependences between modifiables and reads: (v ∈ V, r ∈ R) ∈
D, if r reads v. The containment hierarchy C represents the control
dependences: (r1, r2) ∈ C, if r2 is contained within the dynamic
scope of r1.

The lift operations populate the memo table Σ. Consider an
execution of a lift operation with function f and the strict and non-
strict arguments s and n, respectively. The operation first performs
a memo look up, by checking if there is a call to f with the strict
argument s in the current computation context or context for short.
The context consists of a set of previously performed computations.
If the lookup fails, then the function call is executed, and the
computation is stored in the memo table Σ indexed by the function
and the strict arguments. The stored computation includes the DDG
of the computation and the memo-table entries created during the
computation. If the lookup succeeds, the computation is retrieved
and the non-strict arguments n are updated to their new values.
Change propagation is then run on the computation. To facilitate
change propagation, non-strict arguments themselves are treated as
changeable values by placing them into modifiables.



Given the DDG and the memo table for a self-adjusting pro-
gram, any value stored in a modifiable can be changed by using the
write operation, and the computation can be updated by running
change propagation. The change-propagation algorithm maintains
a queue of affected reads that initially contains the reads of the
changed modifiables (a read is represented as a closure consisting
of a reader and an environment). The algorithm repeatedly removes
the earliest read from the queue, sets the context to the computation
representing the previous execution of that read, and re-executes the
read. By setting the context to contain computations from the previ-
ous execution of the read, the change-propagation algorithm makes
these previously computed results available for re-use. When the
change propagation algorithm terminates, the result and the DDG
of the computation are identical to the result and the DDG obtained
from a from-scratch execution.

Example. As an example of how this approach takes advantage
of the duality of DDGs and memoization, consider the quicksort
example shown in Figure 1. Inserting the new key 8 to the computa-
tion affects the first read containing the leftmost sp function drawn
as a dark solid circle. The change-propagation algorithm therefore
re-executes that function after placing all the calls contained in that
function into the context for re-use. Since the function immediately
calls sp(5), and since that function is in the context, it is re-used.
This process repeats until all affected read’s are re-executed (the
re-executed reads and all new function calls are shown as dark cir-
cles). The amount of work performed is within a constant factor of
the work that is necessary to update the computation.

Key invariants. A conflicting property of memoization and
DDGs requires that certain invariants be maintained to ensure cor-
rectness: with DDGs, every function call in a computation is rep-
resented as a vertex in the DDG of that computation; with mem-
oization, function calls and thus their DDGs can be re-used po-
tentially multiple times. Since the change-propagation algorithm
must return a well-formed DDG, and since a re-used DDG must
be adjusted to changes both due to write operations and due to
non-strict arguments, re-use of function calls must be restricted so
that no function call is re-used more than once. Enforcing this in-
variant is complicated by the fact that when a function call v is
re-used not only v but the descendants of v are re-used. In addition
to this correctness invariant, effective change propagation requires
that the execution order of all vertices be maintained. Original work
on DDGs used constant-time order maintenance data structures for
maintaining this order [4]. Since via memoization, function calls
can be re-used in arbitrary order, their ordering becomes more diffi-
cult to maintain in constant time. Our approach therefore maintains
the invariant that function calls are re-used in the same (relative)
order as they were initially executed.

The approach ensures these invariants by carefully managing
the content of the (current computation) context. During the initial
run, the context is always kept empty. This ensures that no re-
use takes place in the initial run, and therefore the resulting DDG
is well-formed. During change propagation, before re-executing a
function call v, the descendants of v are placed into the context—
this makes them available for re-use. When a vertex v is re-used, the
descendants of v and the vertices that come before v are removed
from the context. Since the ancestors of a vertex are executed before
that vertex, this ensures that the ancestors are also removed.

It is possible to relax these invariants for certain classes of
computations. It is not known, however, if the invariants can be
relaxed in general without increasing the asymptotic overhead of
the algorithms for combining DDGs and memoization.

3.2 The Algorithms
This section describes the algorithms underlying our implementa-
tion. A key to the efficiency of the algorithms is the techniques for

representing memoized computations and enforcing the invariants
the combination needs to maintain (Section 3.1) by using time in-
tervals.

Intervals. Let (U, <) be a totally ordered universe (set), where
< is an order relation. The universe U can be thought as a virtual
time line, the elements of which are called the time (stamps). In the
rest of this section, we denote the time stamps by t (and variants)
and, for the purposes of presentation, we do not mention the fact
that time stamps are drawn from U . An interval δ is either empty
or half-open. We say that the interval δ is half-open if the stop time
te(δ) is included in δ while the start time ts(δ) is not. The half open
interval (t1, t2], where t1, t2 ∈ U , is the set {t ∈ U | t1 < t ≤ t2}.
Throughout, we use lower case Greek letters µ, δ, π, and variants to
denote intervals. As the names imply, the reader may find it helpful
to think of U as the real line and the intervals as time intervals.

We say that a non-empty interval δ′ is a tail of δ, denoted δ′ v δ,
if ts(δ) ≤ ts(δ

′) < te(δ
′) = te(δ). If δ′ v δ and δ′ 6= δ, then δ′ is

a proper tail of δ, denoted δ′ @ δ. For a given set X of non-empty
intervals, we say that the interval µ′ is an X-slice of µ, if µ′ is a
proper tail of µ, and µ \ µ′ does not contain any start or stop time
stamps of the intervals in X , i.e.,

(µ′ @ µ) ∧ (∀δ ∈ X.(δ ∩ (µ \ µ′) 6= ∅ ⇒ (µ \ µ′) ⊂ δ)).

The algorithms require three operations on intervals, defined
and illustrated as follows.

coalesce: δ ⊕ δ′, where δ and δ′ are arbitrary intervals, is the
interval {t | ∃t1, t2 ∈ δ ∪ δ′ s.t. t1 < t ≤ t2}.

split µ at δ, where µ 6= ∅, δ ⊂ µ, and δ 6v µ yields a pair of
intervals (π, µ′) such that π, δ, and µ′ are mutually disjoint and
π ∪ δ ∪ µ′ = µ. Moreover, µ′ v µ and (δ ∪ µ′) v µ. If δ = ∅
then π = ∅ and µ′ = µ.

sliceX(µ) yields an X-slice of µ. This definition does not
uniquely describe the result, but any X-slice will do.

δz }| {
( ] · · ·

δ′z }| {
( ]| {z }

δ⊕δ′

coalesce δ ⊕ δ′

µz }| {
( ]| {z }

π

δz }| {
( ]( ]| {z }

µ′

(π, µ′) = split µ at δ

µz }| {
( ( ]| {z }

sliceX (µ)

µ \ sliceX(µ) does not
contain any endpoint of
an interval in X

DDGs and memo tables. Based on time intervals, we represent
a DDG by the triplet (V, R, D), where V is the set of modifiables,
R is the set of reads, D ⊆ V × R is the set of data dependences.
We associate each read r with its interval, denoted ∆(r), with
the source modifiable, denoted Src(r), and the reader function
Rd(r). We define the ∆-operator on sets of reads point-wise as:
∆(R) = {∆(r) | r ∈ R}. We say that a read r1 is contained in
another read r2 if and only if the time interval of r1 lies within the
time interval of r2.

The memo table for the computation maps function calls to
computations. A function call is represented as a function and the
strict arguments of that function; a computation is represented as a
triple consisting of the interval of the call, the modifiables for the
non-strict variables, and the result of the call.

Execution and change propagation. Each expression (except
for the “meta” operation propagate) executes in the context of an
interval, called the current interval, denoted by µ (and its variants).
The execution of an expression e in the context of µ, denoted e µ,
returns an updated current interval µ′ v µ, a fresh interval δ, and a
result a, i.e.,

(δ, µ′, a)← e µ, where
µ′ v µ and δ ∩ µ′ = ∅ and δ ∪ µ′ is a ∆(R) -slice of µ.



(* DDG is (V, R, D)
* Q is the priority queue

* Σ is the memo table

*)

mod () µ = V ← V ∪ {m}, where m 6∈ dom(V )
return m

read (m,f) µ0 =

µ1 ← sliceR(µ0)
(δ0, µ2, a)← f(Val(m))µ1

µ3 ← sliceR(µ2)
(δ, r)← (µ1 \ µ3, [Rd 7→ f, Src 7→ m, ∆ 7→ (µ1 \ µ3)])
(R, D)← (R ∪ {r}, D ∪ {(m, r)})
return (δ, µ3, a)

write (m, n) µ =

if Val(m) 6= n then
(update(m,n) ; Q← Q ∪ {r | (m, r) ∈ D})

propagate δ =

while r ← extractMinδ(Q) do
( , µ, )← Rd(r)

“
Val(Src(r))

”
(∆(r))

R← {r′ ∈ R | ∆(r′) 6⊂ µ}
(D, Q)← (D |R, Q |R)

lift f (s,n) µ =

case lookupΣ,µ(f,s) of
Found(a,δ,m) ⇒ (π, µ′)← split µ at δ

R← {r ∈ R | ∆(r) ∩ π = ∅}
(D, Q)← (D |R, Q |R)
write (m, n)

propagate δ
return (δ,µ′,a)

| NotFound ⇒ m ← mod()
write (m, n)

(δ,µ′,a) ← f(s,m)µ
Σ ← Σ[f(s, ·) 7→ (a,δ,m)]
return (δ,µ′,a)

Figure 2. An interval-passing semantics of the interface.

The expressions that correspond to mod, read, write, lift
primitives treat intervals specially. All other expressions coalesce
intervals while propagating the current interval forward. For exam-
ple, e1 and e2 are sequentially executed as follows

(δ1 ⊕ δ2, µ
′′, a)← (e1; e2) µ, where,

(δ1, µ
′, )← e1 µ and (δ2, µ

′′, a) = e2 µ′.

Figure 2 shows the pseudo-code for the mod, read, write,
propagate, and lift operations. The code globally maintains the
DDG = (V, R, D), and the memo table Σ, of the computation and
a priority queue, Q, of affected reads. We note that, mod and write
operations do not modify the current interval.

The mod operation extends the set of modifiables with a fresh
modifiable m (that is not contained in the domain of V , i.e., m 6∈
dom(V )) and returns m.

The read operation starts by creating a time interval. The first
slice ensures that each read has its own unique start time. The
second slice guarantees that the interval ∆(r) is non-empty. Since

µ3 is a tail of µ1, the read’s interval ∆(r) = δ = µ1 \ µ3 will be
half-open.

The write operation checks if the value being written differs
from the value stored in the modifiable. If so, the readers of the
modifiable are inserted into the priority queue Q. Since the write
operation does not involve reads, it does not perform any interval
operations.

Change propagation (propagate) updates the given interval δ
by repeatedly extracting the earliest affected read in δ from the
priority queue and re-executing its reader. The re-execution takes
place in the original interval of the read. This ensures that only the
part of the virtual time line that belongs to the re-executed read is
modified by the re-execution. When the re-execution is completed,
the elements of R, D, and Q that do not belong to the new interval
are expunged by restricting R, D, and Q to the new interval µ. 1

Change propagation for an interval δ stops when the queue contains
no read operations that are contained within δ.

The lift operation takes a function, f, along with a strict
argument s, and a non-strict argument n. A memo lookup seeks
for a call to f that is contained within the interval µ, and whose
strict argument is equal to s. When checking for the equality of the
strict arguments, the lookup operation uses shallow equality where
two locations are considered equal if they have the same address
(or identity). If the lookup succeeds, then it returns a result a,
an interval δ, and a modifiable m that contains the values of the
non-strict argument. The algorithm extracts the interval δ from µ
by using split, writes the new non-strict argument into m, and
change-propagates into δ. This adjusts the re-used computation to
all changes. The algorithm then expunges the elements that belong
to the interval π and returns. This ensures that all elements of the
DDG that do not belong to the current computation are removed.
If the memo lookup is not successful, then the algorithm creates a
new modifiable m and writes the non-strict argument into m, and
applies f to s and m. Finally the algorithm remembers a, m, and δ
in the memo table Σ.

Restricting the memo look ups to the current interval, and slid-
ing the current interval past the interval of the re-used computation,
δ, (by splitting the current interval at δ) ensures that each func-
tion call is re-used at most once. As mentioned in Section 3.1, this
is critical for correctness. Sliding the current interval past the re-
used interval also ensures that the ordering between the intervals of
the function calls respect their existing ordering. This enables im-
plementing the time line using constant-time data structures (Sec-
tion 4).

4. Implementation
We implemented the approach described in Section 3 as a library
for the Standard ML language. This section gives an overview
of the main data structures, discusses the space integrity property
(Section 4.2), and describes some optimizations (Section 4.3). The
full code for the library can be found at

http://ttic.uchicago.edu/~umut/sting/

4.1 Data Structures
Intervals. The implementation globally maintains a (virtual) time
line that consists of a totally ordered set of time stamps. An interval
is represented as a pair of time stamps, e.g., the interval (t1, t2] is
represented with the the pair (t1, t2). Three operations are used to
maintain the time line: the insert operation inserts a new time
stamp immediately after a given time stamp in the time line; the
delete operation removes a given time stamp from the time line;

1 The notation X |R denotes the restriction of X to elements that do not
mention reads outside R.



and the compare operation compares the ordering of time stamps
in the time line. In addition to the time line, the implementation
maintains two time stamps, called the current time and the finger.
Together these define the current interval.

The insert, delete, and compare operations suffice to sup-
port all operations on intervals (Section 3.2). The slice operation
is implemented by inserting a new time stamp t after the current
time and setting the current time to t. The split operation is im-
plemented by deleting all time stamps between the current time
and the desired interval. Since the implementation of the slice
operation advances the current time, an explicit use of coalesce
operations does not arise.

Since our algorithms operate on the time line extensively, main-
taining it efficiently is critical for performance. We therefore im-
plemented the (amortized) constant-time order maintenance data
structure of Dietz and Sleator [18] (our implementation is based on
Bender et al.’s description [11]).

Dynamic dependence graphs. The implementation globally main-
tains the current dynamic dependence graph (DDG). Each read
consists of a closure and a pair of time stamps representing its in-
terval. Each modifiable reference is implemented as a reference to a
tuple consisting of a value and a read list. A read list is maintained
as a doubly linked list of reads.

Lift functions and memo tables. The implementation treats lift
functions somewhat differently from the algorithmic description
(Section 3).

The first difference concerns the maintenance of memo tables.
Instead of maintaining one memo table for the whole computation,
the implementation provides a primitive, called mkLift, for cre-
ating lift functions that have their own memo tables. The mkLift
primitive allocates a memo table and specializes a generic lift
function for the allocated memo table; the specialized function uses
its own memo table for all memo operations. This design decision
obviates the need for comparing functions.

The second difference is in the association of time intervals with
memo entries. In the algorithmic description (Section 3), a memo
entry can have an empty interval. In particular, if the memoized
computation does not perform any reads, then the interval for that
computation will be empty. This makes it impossible to determine
to if a memo entry is live, i.e., belongs to the current computation.
Therefore, it is possible for memo tables to accumulate over time.
In order to ensure strict bounds on the space consumption, the
implementation associates a non-empty interval with each memo
entry.2 To achieve this, when a memo entry is first created, the
implementation checks if the interval for that entry is empty. If not,
then the implementation proceeds as usual. If the interval is empty,
then the implementation creates two consecutive time stamp, t1
and t2, following the current time, and assigns the interval (t1, t2]
to the memo entry. This makes it possible to delete memo entries
that are not live by checking whether t1 (or t2) is live—Section 4.2
describes how this can be used to ensure a space integrity property.

Memo tables are implemented as hash tables with chaining [23].
A hash table is an array of buckets, each of which points to a list
of entries. Each entry represents a function call and consists of the
result, the time interval (two time stamps), and the non-strict ar-
guments of the call. Memo lookups are performed by hashing the
strict arguments of the call. A lookup succeeds if there is a memo
entry within the current interval that has the same strict arguments.

2 An alternative is to maintain memo tables as caches with a particular cache
replacement policy. Unfortunately, no cache-replacement policy can be op-
timal for all computations—for any given policy there will be applications
for which the choice is suboptimal. Cache replacement policies can also
make it difficult to prove asymptotic time bounds and cause unpredictable
performance in practice.

Insertion and deletions operations are supported as usual. The im-
plementation ensures that the load factor of the hash tables do not
exceed two by doubling the tables as necessary.

For fast equality checks and hashing, the implementation relies
on boxing (a.k.a., tagging). Every strict argument to a lift function
is required to be tagged with a unique identity (an integer) (since
ML is type safe, values of different types can have the same iden-
tity). These tags are used both for computing the hashes, and for
resolving collisions.

4.2 Space Integrity
The implementation ensures that the total space usage never ex-
ceeds the space that would be used by a from-scratch execution
of the (self-adjusting) program with the current input. We refer to
this property as space integrity. The property implies that the space
usage is independent of the past operations (i.e., history). As an
example, consider running a program P with some input and then
performing a sequence of change-and-propagate steps, where each
step makes some change and runs change propagation. At the end
of these operations, the total space usage is guaranteed to be the
same as the space used by a from-scratch execution of P with the
final input.

The implementation enforces space integrity by eagerly releas-
ing all references to trace elements, (modifiables, reads, memo en-
tries, time stamps) that do not belong to the current computation.
This makes the trace elements available for garbage collection as
soon as possible. Since modifiable references are only referenced
by reads and memo entries, and since reads, memo entries, time
stamps are not referenced by any other library data structures, re-
leasing the reads, memo entries, and time stamps suffices to ensure
space integrity.

A key property of the implementation is that each live read and
memo entry (which belong to the current computation) have an
associated time stamp. The implementation relies on this property
to ensure space integrity. The idea is to maintain conceptual back
pointers from each time stamps to the reads and memo entries with
which the time stamp is associated. Note that each memo entry and
each read are associated with two time stamps (a start and an end
time stamp). Since each read and memo entry should be released
once, it suffices to maintain back pointers only at one time stamp. In
the implementation, we choose to keep the back pointers for reads
at their start time stamps, and the back pointers for memo entries
at their end time stamps. As an example, consider a time stamps
t being deleted (by the split operation). First, t is removed from
the order maintenance data structure. Second, the back pointers of
t are used to find the read or the memo entries associated with t.
Third, the read is removed from the read list that contains it, or
all associated memo entries are removed from the memo tables
that they are contained in. Due to some subtle constraints of the
type system of the Standard ML language, we implement the back
pointers by associating a closure, called the release function, with
each time stamps. When a time stamp is deleted, its release closure
is executed. Since multiple memo entries can have the same end
time stamp, a time stamp can have multiple release functions—
these are represented by composing them into one function.

We have found that the space-integrity property is critical for
the effectiveness of the library. Our earlier implementations suffer
from space explosion, because they lazily release reads and memo
entries (by flagging deleted reads and memo entries and releasing
flagged objects when next encountered).

To verify that our implementation ensures the space-integrity
property, we implemented a space-profiling version of our library.
Using the library, we experimentally verified that the numbers of
all live library-allocated objects (modifiables, reads, time stamps,
memo entries, and memo tables) after various sequences of change-



and-propagate steps are equal to the numbers obtained by from-
scratch execution.

4.3 Optimizations
We describe an optimization that we employed in implementing
the library and two specialized primitives for reading modifiables
and creating lift functions that take advantage of specific usage
patterns. To use the optimized primitives, the programmer replaces
each call to an operation with a call to the optimized version of
that operation. This may require making some small changes to the
code.

Single reads. In many applications, most modifiables are read
only once. For example, for all the applications considered in this
paper, the average number of reads per modifiable is less than 1.5.
To take advantage of this property we implemented a version of the
read lists data structure described in Section 4.1 that is specialized
to contain no extra pointers when the list consists of only one read.
When the list contains multiple reads, the data structures separates
one of the reads as special, and places all other reads in a doubly
linked list. The first element of the doubly linked list points to
the special list and the second element. This data structure can be
thought as a doubly linked list that has two base cases, an empty
and a single-read case.

This optimization makes the operations on reads lists slightly
more complicated than a standard doubly-linked lists and also
complicates the eager deletion of reads—when a read becomes
the only read, then its release closure may need to be updated to
account for this change. Since a large percentage of the modifiables
are read only once, however, we found that this optimization can
improve the running times and reduce the size of the memory print.
We also experimented with read lists optimized for both single and
double reads but observed little or no improvement over the single-
read optimization.

Immediate reads. This optimization concerns the elimination
of immediate reads whose time intervals are empty. Sometimes, a
modifiable reference is written and is then immediately read in or-
der to copy its value to another modifiable. A modifiable reference
sometimes performs a non-self-adjusting computation that creates
no time stamps (other than the times stamps that would be cre-
ated for the read itself). For example, a function f may call some
other function g, which writes its result to a modifiable reference.
Function f can then read the result computed immediately after its
written, place the value read in a tuple, and write it to another mod-
ifiable. Since such reads take place immediately after the write and
since they contain no other time-stamp creating computations, they
need not be associated with a proper time interval—they can be pig-
gybacked to the preceding write. When a modifiable is written, the
piggybacked read is executed immediately. Beyond replacing the
library-provided read function with the immediate read function,
this optimization requires no further changes to existing code. We
used this optimization in the implementation of lift operations.
For our benchmarks, we have observed that this optimization can
reduce the running time by up to 10% for both from-scratch runs
and change propagation.

Inlining lift operations. This optimization eliminates modi-
fiables and reads that are created by the lift operations due to non-
strict arguments when the non-strict arguments are only passed to
a tail call. The idea is to store the value of the non-strict arguments
directly in the memo table. When a memo match takes place, the
recursive tail call is performed explicitly. This optimization can be
viewed as an inlining of the lift operation; it saves a modifiable, a
read, and two time stamps.

As an example, consider the call f(s,n) to a lift function f with
the strict argument s and a non-strict argument n. When called,

the function first performs a memo look up using s. If there is a
memo match, then the match yields a result r and a modifiable m
that stores the value of the non-strict argument for the re-used
call. Before returning the result, the function writes n into m and
performs change propagation. This change propagation adjusts the
computation according to the value the non-strict argument n. If n
was just passed as argument to a tail call, then change propagation
simply executes that call. With the optimization, the tail call is
executed explicitly instead of relying on change-propagation.

To support this optimization, the library provides a version of
the mkLift primitive that takes the function to be tail called as a
separate argument. To use the optimization, the programmer spec-
ifies the tail call explicitly. The opportunity for this optimization
arises often. In our benchmarks, we have observed that the opti-
mization can reduce the running time for both change propagation
and from-scratch execution up to 40% depending on the applica-
tion.

4.4 Garbage Collection
Self-adjusting computation contradicts some key assumptions that
generational garbage collectors rely on.

1. Due to the side-effecting nature of write operations, it is com-
mon for old data to point to new data, and

2. A significant portion of the total allocated data, i.e., trace data
(modifiables, reads, memo table entries, and time stamps), have
long lifespans.

The generational garbage collection systems that we experi-
mented with (MLton, SML/NJ) do relatively poorly when the total
amount of live trace data becomes large compared to the available
memory (Section 6). We discuss some possible directions for better
garbage collection support in Section 7.

4.5 Asymptotic Performance
We show elsewhere [2] that the overhead of the implementation
described here is (expected) constant (the expectation is taken over
internal randomization used for hash tables). This implies that a
from-scratch execution of a self-adjusting program is by a constant
factor slower than the from-scratch execution of the corresponding
non-self-adjusting program.

In addition to the overhead, asymptotic complexity of change
propagation (under a given change) can also be analyzed using
algorithmic techniques. Acar’s thesis develops an analysis tech-
nique called trace stability for this purpose and gives tight bounds
on some of the applications considered here [2]. At a high level
trace stability measures the edit-distance between the traces of the
program with two inputs. For a particular class of computations
called monotone, it is shown that the time for change propagation
is bounded by the edit distance. Informally, we say that a program
is stable if the edit-distance between its traces is small under small
changes.

5. Applications
To evaluate the effectiveness of the approach, we implemented
standard and self-adjusting versions of the following applications.

• filter: Takes a list and a boolean function and returns the list of
values from the list that satisfy the function.

• fold: Takes a list and an associative binary operator and applies
the operator to the elements of the list to produce a single value.

• map: Takes a list and a function and constructs another list by
applying the function to each element.

• reverse: Reverses a list.



• split: Takes a list and a boolean function and returns two lists
consisting of the elements for which the function returns true
and false respectively.

• quick-sort: The quick-sort algorithm for list sorting.
• merge-sort: The randomized merge-sort for list sorting.
• graham-scan: The Graham-Scan convex-hull algorithm [20].
• quick-hull: The quick-hull algorithm for convex hulls [9].
• merge-hull: The merge-hull algorithm for convex hulls.
• ultimate: A randomized version of Chan’s convex-hull algo-

rithm [14].
• diameter: Shamos’s algorithm for finding the diameter of a set

of points [33].

These applications are chosen to span a number of comput-
ing paradigms including simple iteration (filter, map, split),
accumulator passing (reverse, quick-sort), incremental re-
sult construction (graham-scan), random sampling (fold), and
divide-and-conquer (merge-sort, quick-sort, merge-hull,
ultimate). The graham-scan algorithm combines a convex-hull
algorithm with a linear scan. Similarly, the diameter algorithm
combines a convex-hull algorithm with a linear scan. For some of
the problems considered here, we show elsewhere [2] asymptotic
bounds that closely match the best bounds achieved by special-
purpose algorithms developed in the algorithms community.

List primitives. The list primitives consists of filter, fold,
map, reverse, split. Except for fold, all of these applications
perform a traversal of the list as they construct the output itera-
tively. To implement fold, we use a random-sampling technique
instead of the usual iterative approach. The self-adjusting version
of the iterative algorithm does not yield an efficient self-adjusting
algorithm, because it is not stable—a small change to the input can
cause a nearly complete re-computation in the worst case. The ran-
dom sampling approach ensures stability by braking symmetry of
the input randomly. The algorithm computes the result by randomly
sampling the list and applying the operation to this sample. The al-
gorithm repeats this sampling step until the list reduces to a single
element. For all these algorithms, it is reasonably straightforward
to show constant stability and hence, constant-time update bounds
for small changes (e.g, an insertion or deletion).

Sorting algorithms. The sorting algorithms quick-sort and
the randomized merge-sort algorithms are standard. The quick-
sort algorithm divides its input into two sublists based on the first
key in input (selected as the pivot) and recursively sorts each half.
The algorithm avoid concatenating the results by passing the sorted
half in an accumulator. The randomized merge-sort algorithm di-
vides its input into two sublists by randomly selecting for each ele-
ment in the input a destination sublist. The sublists are then sorted
recursively and merged as usual. The deterministic version of the
merge-sort algorithm can also be made self-adjusting but it is not
as stable as the randomized algorithm, which is within an expected
constant factor of the optimal for an insertion or deletion [2]. Both
quick-sort and merge-sort use the split primitive to partition
their input into two sublists.

Computational-geometry algorithms. The computational-
geometry algorithms consists of a number of convex-hull algo-
rithms (graham-scan, qhull, merge-hull, ultimate) and an al-
gorithm for computing the diameter of a point set (diameter). The
convex hull of a set of points is the smallest polygon enclosing the
points. The static convex hull problem requires computing the con-
vex hull of a static (unchanging) set of points. The dynamic convex
hull problem requires the maintenance of the convex hull of a set
of points, as the point set changes due to insertions and deletions.
Both the static [20, 22, 14, 9, 34] and the dynamic [28, 32, 15, 12]
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Figure 3. Chan’s algorithm for convex hulls.

convex hulls have been studied extensively for over two decades.
To appreciate the complexity of the dynamic convex-hull problem,
it should suffice to look over any of the aforementioned papers.

Of the convex hull algorithms that we consider, Chan’s algo-
rithm is the most sophisticated. The algorithm is optimal in the size
of the output (not just the input). This divide-and-conquer algo-
rithm performs a special elimination step before the recursive calls.
The elimination step removes a constant fraction of points from
the inputs to recursive calls—it is the key to the optimality of the
algorithm. Figure 3 illustrates how a randomized version of the al-
gorithm works. For symmetry reasons, we describe only how the
upper half of the hull is constructed. Given the leftmost (L) and the
rightmost (R) points, the algorithm pics a random pair of points (A,
B), and finds the farthest point (M) from the line (A,B). The al-
gorithm then pairs the points randomly and eliminates an expected
constant fraction of the points by applying an elimination test to
each point. The algorithm then computes the left and right halves
of the problem defined by the extreme points (L,M) and (M,R) re-
spectively.

The diameter of a set of points is the distance between the pair
of points that are farthest away from each other. By definition,
such a pair is on the convex hull of the point set. For computing
the diameter, we use Shamos’s algorithm [33]. This algorithm first
computes the convex hull the points and then performs and iterative
traversal of the convex hull while computing the maximum distance
between anti-podal points. In our implementation of the diameter,
we use the quick-hull algorithm to compute the convex hull.

All the computational geometry algorithm rely on the lists prim-
itives to perform various functions. The ultimate and quick-hull
applications use fold to find the point furthest away from a given
line. The merge-hull application relies on the split primitive to
divide its input into two sublists randomly, recursively computes
their convex hulls and the merges the two hulls. The graham-scan
application relies on a sorting step to sort the input points with
respect to their x-coordinates (we use the merge-sort).

6. Experiments
This section describes an experimental evaluation of the implemen-
tation (Section 4) with benchmarks derived from the our applica-
tions (Section 5). We report detailed results of one of the computa-
tional geometry algorithms—the ultimate convex-hull algorithm–
and summarize results for the rest of the benchmarks.

6.1 The Benchmarks
For the experiments, we implemented a static (non-self-adjusting)
version, and a self-adjusting version of each application described
in Section 5. To give a sense of how the two versions differ,
Table 1 shows the number of lines and the number of tokens for
the static and the self-adjusting versions of our sorting and convex-
hull benchmarks (as counted by wc utility).3 The self-adjusting

3 Since the list primitives rely on library functions, they are not included. A
“token” is a string of characters delimited by white spaces.



Application Static Self-Adj. Static Self-Adj.
# Lines # Lines # Tokens # Tokens

merge-sort 94 109 262 335
quick-sort 47 62 152 215
graham-scan 125 132 383 427
merge-hull 203 212 508 676
quick-hull 117 126 405 425
ultimate 207 208 630 697
diameter 177 199 558 660

Table 1. Number of lines and tokens for some applications.

versions contain about 10% more lines and 20% more tokens their
static versions (on average). Much of this effectiveness is due to
the ability to compose (or combine) functions as with conventional
programming (as described in Section 5, the applications rely on
other applications, especially list primitives, to compute various
intermediate results).

Except for the fold application, the underlying algorithms for
both versions are identical—the ordinary version of fold uses the
foldr primitive provided by the SML Basis Library. All our bench-
marks are derived by specializing the applications for particular
inputs. The filter benchmark filters out the even elements in a
list. The map benchmark maps an integer list to another integer list
by adding a fixed value to each element in the list. The minimum
benchmark computes the minimum of a list of integers. The sum
benchmark sums the floating-point numbers in a list. Both sum
and minimum are applications of the fold primitive. The reverse
benchmark reverses a list of integers. The split benchmark di-
vides inputs input into two lists based on a random hash function
that maps each element to true or false. The sorting benchmarks,
quick-sort and merge-sort sort strings. All convex-hull and the
diameter benchmarks compute the convex hull and diameter of a set
of points in two dimensions respectively.

6.2 Input Generation
We generate the input data for our experiments randomly. To gen-
erate a list of n integers, we choose a random permutation of
the integers from 1 to n. To generate a floating-point or a string
list, we first generate an integer list and then map the integers
to their floating point or string representation (in decimal). For
the computational-geometry algorithms, we generate an input of n
points by picking points uniformly randomly from within a square
of size 10n× 10n. The dynamic changes that we consider are de-
scribed in the next section.

6.3 Measurements
We ran our experiments on a 2.7GHz Power Mac G5 with 4GB
of memory. We compile our benchmarks with the MLton com-
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Figure 4. Time for initial-run (seconds) versus input size for
ultimate.

piler using “-runtime ram-slop 1 gc-summary” options. The
“ram-slop 1” option directs the run-time system to use all the
available memory on the system—MLton, however, can allocate
a maximum of about two Gigabytes. The “gc-summary” option
directs the run-time system to collect summary information about
garbage collection. In particular, the system reports the percentage
of the total time spent for garbage collection.

In our measurements we differentiate between application time
and total time. The total time is the wall-clock time, the application
time is the total time minus the time spent for garbage collection.
We measure the following quantities.

• Time for from-scratch execution: The time for executing the
ordinary or the self-adjusting versions from-scratch.

• Average time for an insertion/deletion: This is measured by
applying a delete-propagate-insert-propagate step to each ele-
ment. Each such step deletes an element, runs change propa-
gation, inserts the element back, and runs change propagation.
The average is taken over all propagations.

• Crossover point: This is the input size at which the average
time for change propagation becomes smaller than the time for
the from-scratch execution of the ordinary program.

• Overhead: This is the ratio of the time for the from-scratch
execution of the self-adjusting version to the time for the from-
scratch execution of the ordinary version with the same input.

• Speedup: This is the ratio of the time for the from-scratch
run of the ordinary version to the average time for inser-
tion/deletion.

6.4 The Results
Figures 4, 5, 6 and 7 show various measurements with Chan’s
algorithm (ultimate). Figure 4 compares the from-scratch runs of
the ordinary and self-adjusting versions. This figure shows that the
overhead of the self-adjusting version over the ordinary version is
about a factor of five including GC time; without GC, the overhead
is less than a factor of three. Figure 5 shows the average time
for change propagation after an insertion/deletion. When GC time
is excluded, the time grows very slowly with input size. When
including the GC time, the time grows faster (especially towards
the larger end of the horizontal axis) as the ratio of the size of
the trace data to the size of the available space increases. Figure 6
shows the average speedup (the time for recomputing from scratch
divided by average time for change propagation). Without the GC
time, the speedup increases nearly linearly with the input size.
When including GC time, the speedup grows more slowly. Still,
when the input size is 100,000, change propagation is more than
a factor of 600 faster than recomputing from scratch. Figure 7
shows the number of modifiables (modrefs), reads, and number
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Application n Ord./Run Self/Run Self/Propagate Overhead Crossover Speedup

filter 106 1.9 2.5 3.2 5.1 5.3 × 10−6 1.4 × 10−5 1.7 2.1 1 1 > 4 × 105 > 2 × 105

sum 106 1.0 1.2 3.7 6.4 8.3 × 10−5 1.1 × 10−4 3.8 5.5 1 1 > 104 > 104

map 106 1.8 2.5 3.9 12.6 4.8 × 10−6 1.2 × 10−5 2.1 5.1 1 1 > 4 × 105 > 2 × 105

minimum 106 1.8 2.4 3.7 6.4 1.6 × 10−5 3.4 × 10−5 2.1 2.6 1 1 > 105 > 7 × 104

reverse 106 1.8 2.4 4.7 13.8 5.0 × 10−6 1.6 × 10−5 2.6 5.8 1 1 > 4 × 105 > 105

split 106 2.2 2.9 2.9 4.9 6.2 × 10−6 1.4 × 10−5 1.3 1.7 1 1 > 4 × 105 > 2 × 105

quick-sort 105 0.4 0.5 3.1 11.2 3.8 × 10−4 1.1 × 10−3 8.5 23.2 1 1 > 955.4 > 431.3

merge-sort 105 1.2 1.4 6.4 13.8 3.8 × 10−4 1.3 × 10−3 5.2 9.7 1 1 > 3 × 103 > 103

graham-scan 105 1.6 1.8 9.8 43.3 8.0 × 10−4 3.2 × 10−3 6.2 24.1 29 52 > 2 × 103 > 557.3

merge-hull 105 2.1 2.4 7.7 44.9 5.9 × 10−3 1.9 × 10−2 3.7 18.9 39 52 > 352.7 > 124.0

quick-hull 105 1.0 1.3 3.2 8.8 2.1 × 10−4 4.0 × 10−4 3.2 6.8 17 17 > 5 × 103 > 3 × 103

ultimate 105 1.5 1.9 4.0 9.9 1.0 × 10−3 2.8 × 10−3 2.6 5.1 1 1 > 2 × 103 > 688.0

diameter 105 1.6 1.8 3.1 7.8 2.5 × 10−4 4.4 × 10−4 2.0 4.2 10 13 > 5 × 103 > 4 × 103

Table 2. Measurements with our benchmarks (all times are in seconds).

of memo entries allocated for various input sizes. The number of
modifiables and reads closely follow the execution time. Note also
that the number of reads is only slightly larger than the number of
modifiables. For our applications, we observed that modifiables are
read slightly more than once on average.

Table 2 shows the measurements with all our benchmarks at
fixed input sizes (the column titled “n” specifies the input size).
The columns are divided into two sub-columns (except for the “n”
column) that report the measured quantity excluding and includ-
ing the time for garbage collection respectively. The “Ord. Run”
column shows the time for a from-scratch execution of the ordi-
nary version, the “Self-Adj. Run” column shows the time for a
from-scratch execution of the self-adjusting version, the “Change
Propagate” column shows the average time for change propagation
after an insertion/deletion. The “Overhead”, “Crossover”, and the
“Speedup” columns show the corresponding quantities, as defined
in Section 6.3. For example, with the filter benchmark the or-
dinary version takes 1.9 and 2.5 seconds without and with the GC
time respectively; change propagation takes 5.3 × 10−6 seconds
and 1.4 × 10−5 seconds without and with the GC time; the over-
head is a factor of 1.7 when the time for GC is excluded and 2.1
when the time for GC is included; and the speedup is more than
factor of 4× 105 and 2× 105 without and with GC time.

The table shows that, when the GC time is excluded, overheads
are well within a factor of ten for all applications (the average
is 3.5). When the time for garbage collection is included, over-

heads are higher (the average is 8.8). What determines the over-
head is the ratio of the total cost of the library operations (opera-
tions on modifiable reference and memoization) to the amount of
“real” work performed by the ordinary algorithm. The overhead
for the list primitives is relatively small, because these operations
perform relatively few library operations. For the sorting applica-
tions, overheads are higher, because comparisons are cheap. Be-
tween two sorting algorithms, the overhead for mergesort is lower
because mergesort is more memory intensive (due to the separate
split and merge steps). For our computational geometry applica-
tions, the overheads are smaller, because geometric tests are rel-
atively expensive. One exception is the Graham Scan algorithm,
where the dominating cost is the sorting step.

Although the overhead is an important quantity, it should not be
overemphasized, because it pertains to a from-scratch execution.
With a self-adjusting application, from-scratch executions are rare,
because changes to the input can be handled by change propaga-
tion. To measure the effectiveness of change propagation compared
to from-scratch execution, we measured the crossover point (where
change propagation becomes cheaper than recomputing), and the
speedup. As the table shows, the crossover point under a single in-
sertion/deletion is small for all our applications, and change prop-
agation leads to orders of magnitude speed up over recomputing
from scratch.

The reason for high speedups obtained by change-propagation
is that there is often a near-linear time asymptotic gap between re-



 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0  200  400  600  800  1000

T
im

e 
(m

s)

Input Size (in Thousands)

App. + G.C.
App.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50  60  70  80  90  100

T
im

e 
(m

s)

Input Size (in Thousands)

App. + G.C.
App.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50  60  70  80  90  100

T
im

e 
(m

s)

Input Size (in Thousands)

App. + G.C.
App.

Figure 8. Average time (milliseconds) for insert/delete with filter, quick-sort, and quick-hull (from left to right) versus input size.
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Figure 9. Time (seconds) for batch changes with merge-hull, ultimate, and diameter versus batch size.

computing from scratch and change propagation. The first author’s
thesis proves this claim for a number of applications [2]. Our ex-
periments validate this claim. Figure 8 shows the average time for
change propagation after an insertion/deletion for a sample of our
benchmarks. As can be seen, the application time grows slowly
as the input size increases (especially when not including the GC
time). The timings for other applications are similar.

6.5 Batch Changes
An important property of the change-propagation algorithm is its
generality: it can adjust a computation to any change. For example,
changes can be performed simultaneously in batches. We present
some experimental results that show that batching changes can be
significantly faster than performing them one by one.

To determine the effectiveness of batching, we perform the fol-
lowing experiment: We move all points in the input to a new loca-
tion (by multiplying the coordinates of each point with a constant
less than one) in varying sizes of batches. Each batch moves a num-
ber of points and performs a change propagation. We measure the
average time for moving one point by dividing the total time it takes
to move all points divided by the number of points.

Figure 9 shows the timings with the merge-hull, ultimate,
and the diameter applications. The y axis is the running time in
logarithmic scale, the x axis is the batch size. A measurement (x, y)
means that the time for replacing each point (p) in the input (with
0.8 ·p) while performing change propagation after every x replace-
ments is y. For all applications, the input size is fixed at 100K. The
figure shows that the running time for merge-hull and ultimate
drops sharply with batch size (note the logarithmic scale). With
diameter, the gains are less dramatic but still significant. The per-
formance benefits of performing changes in batches is determined
by the amount of interaction between the changes—the more they
interact, the more the performance gains. When the batch size is
equal to the input size, each point is replaced and change propaga-

tion is run only once. At this point, the total time is about a factor
of three more than time for a from-scratch execution.

7. Discussions
Overhead and speedup. We believe that the overhead of our ap-
proach and the speedups can be further improved by direct com-
piler support for self-adjusting-computation primitives. With com-
piler support, we can give low-level implementations for our key
data structures such as modifiables, reads, read lists, time stamps.
These implementations would be significantly faster and consume
less space by avoiding extra indirections that arise in the Standard
ML language.

Garbage collection. Since trace elements (modifiables, reads,
memo tables etc.) are known to have a long life span, and since
the change-propagation algorithm explicitly frees the parts of the
trace that become garbage (this is critical for the correctness of the
algorithm), we expect that it will be possible to design a garbage
collection algorithm that can deal with traces efficiently.

Correctness. The algorithms for combining memoization and
dynamic dependence graphs are complex. It is quite difficult to ar-
gue about their correctness even informally. The combination, how-
ever, can be formalized by giving an operational semantics [2]. We
expect that it will be possible (but difficult) to prove the correct-
ness of the algorithms based on this operational semantics. Such
a proof would also elucidate various invariants maintained by the
operational semantics formally and can give insight about whether
they can be relaxed.

Other applications. This paper evaluates performance of self-
adjusting programs under so called discrete changes where input
elements are deleted and inserted. Self-adjusting programs can also
adjust to so called continuous changes (e.g., due to motion in ge-
ometric algorithms). In fact, the computational-geometry applica-
tions described here can automatically maintain their output under



motion when linked with a kinetic library. A description of such a
kinetic library can be found elsewhere [7, 2]. The code for the ki-
netic library and the kinetic versions of our applications is available
at http://ttic.uchicago.edu/~umut/sting/

Alternative combinations. This paper focuses on a particular
combination of dynamic dependence graphs and memoization that
ensure constant-time overheads. To achieve this performance guar-
antee, this combination puts certain restrictions on computation re-
use. For a class of computations, called monotone, the combination
guarantees maximal result re-use [2]. For non-monotone compu-
tations, we expect that it is possible to provide for more flexible
result re-use by giving other combinations of dynamic dependence
graphs and memoization—especially if one is content with loga-
rithmic (instead of constant) overheads.

8. Conclusion
Our experiments demonstrate that the combination of DDGs and
memoization is effective in practice for a variety of algorithms.
This required some care in the implementation; the paper described
the key techniques that were necessary. We believe this is the first
experimental evidence that incremental computation of any type is
effective in practice for a reasonably broad set of algorithms and
computational paradigms (divide-and-conquer, random sampling,
accumulator passing, and incremental construction).
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