Traceable Data Types for Self-Adjusting Computation

Umut A. Acar*

Max-Planck Institute
for Software Systems

umut@mpi-sws.org

Guy Blelloch

Abstract

Self-adjusting computation (SAC) provides an evaluatioodet

where computations can respond automatically to modiinati
to their data by using a mechanism for propagating modifioati
through the computation. Current approaches to self-adgisom-
putation guarantee correctness by recording dependencéesace
at the granularity of individual memory operations. Tracat the

granularity of memory operations, however, has some ltipita:

it can be asymptotically inefficient (e.g., compared to myati solu-
tions) because it cannot take advantage of problem-spetific-
ture, it requires keeping a large computation trace (oftepqr-

tional to the runtime of the program on the current inputy &n
introduces moderately large constant factors in practice.

In this paper, we extend dependence-tracing to work at due-gr
ularity of the query and update operations of arbitrary tfaics)
data types, instead of just reads and writes on memory délls.
can significantly reduce the number of dependencies that twee
be kept in the trace and followed during an update. We define an
interface for supporting a traceable version of a data tygech
reports the earliest query that depends on (is changed big- re
ing operations back in time, and implement several sucletstres,
including priority queues, queues, dictionaries, and tensn We
develop a semantics for tracing, extend an existing sélfstidg
language AML, and its implementation to support traceable data
types, and present an experimental evaluation by consglexi
number of benchmarks. Our experiments show dramatic ineprov
ments on space and time, sometimes by as much as two orders o
magnitude.

Categories and Subject DescriptorsD.3.0 [Programming Lan-
guage§ General; D.3.3 Programming LanguagéslLanguage
Constructs and Features

General Terms Languages

Keywords self-adjusting computation, traceable data types

* Acar is partially supported by gifts from Intel, MicrosofteRearch, and
Jane Street Capital.

T Ley-Wild is partially supported by a Bell Labs Graduate Gathip.
¥ Turkoglu is partially supported by gifts from Intel anch@eStreet Capital.

Permission to make digital or hard copies of all or part o thdrk for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI'10, June 5-10, 2010, Toronto, Ontario, Canada.
Copyright(© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

Ruy Ley-Wild
Kanat Tangwongsan

Carnegie Mellon University
{blelloch,rleywild, ktangwon } @cs.cmu.edu

Duru Turkoglut

University of Chicago
duru@cs.uchicago.edu

1. Introduction

Many applications must process data that changes, sonsetione
tinuously, over time, possibly with small changes at eaep.gtor
example, a traffic controller needs to update a traffic magr aifih
accident blocks a road segment, a robot may need to update its
motion plan after encountering a new obstacle, a theorewepro
may need to update its conclusions after discovering a nety fa
or a blood-flow simulator must compute properties of molesul
that move continuously over time. In these and similar aapli
tions, small or continuous changes to data often cause omyl s
updates to the output, making it possible to respond to dicaiy+
changing data more efficiently than re-computing the outfmrh
scratch, often asymptotically. To exploit this potent@ie can de-
velop so called “dynamic” of “kinetic” algorithms that areto
mized to deal with particular forms of changing input. Indethere
has been significant progress on such algorithms (e.g.1[7,40).
Designing and implementing these algorithms turns out tquie
difficult even for problems that are simple in the absenceat&d
changes, such as many of the simple graph and some computa-
tional geometry algorithms. All too often, when such algaris
exist, they are quite complex and difficult to implement.

Alternatively, the programming languages community has de
veloped techniques that automate or mostly automate the psof
translating an implementation of an algorithm for fixed inpio
a version for changing input (e.g., [12, 15, 23]) by storimgtain
jrace information during the computation. A recent apphdaased
on a combination of dynamic dependence graphs [2] and memoiz
tion has been used to develop asymptotically efficient vassof a
reasonably broad set of problems [5, 25]. This approacledaélf-
adjusting computation (SAC), generates a computationraigpee
graph while running the program on the initial data, andest@nfor-
mation at each node of the graph representing the code thdsne
to be rerun if its input changes. A change-propagation #lyor
propagates any input changes through this graph, updéknggtrts
of the graph and the output that depend on them. Memoization a
lows the algorithm to reuse portions of the graph during pgap
tion. The time taken by change-propagation depends on radsest
the computation trace is with respect to changes in input Re-
cent work shows that self-adjusting computation and itsavas
can be supported by extending existing languages, such a8]C [
Java [25], and Standard ML [19].

To achieve automatic and correct updates under data medifica
tions, existing self-adjusting computation techniquesédrdepen-
dencies at the (memory) cell level by recording memory dpara.
Although very flexible, this fine-grained approach to trachmes
some performance problems, both in terms of time and spasg, F
it creates a considerable time overhead, slowing down galgn
every memory operation. Second, it requires significant orgm
space for storing fine-grained dependence informationd]hihen
implementing data types using the approach, updates case cau
many changes internal to the data type implementation, eem

the changes that propagate to the interface are small-thieecom-
putation can be stable with respect to operations of the tgp
but not stable with respect to individual cell accessesimaltely
causing sub-optimal updates. An example of this third bk in
maintaining a priority queue, where inserting a single @ettan
require linear time for change-propagation at the celllleven if
it only creates a single change (an additional insert ojmeraat
the interface level. Many algorithms that use a priority wpigvill

suffer from this problem.

In this paper, we extend the tracing of dependencies to stippo
the query and update operations of arbitrary (abstract gaes,
instead of just the reads and writes of a cell. For many aaiidins,
this asymptotically reduces the number of dependencidsatiea
traced, reducing memory and time overhead, and for somenit ca
speed up change propagation dramatically by making thene mor
stable. This extension involves developitrgceableversions of
any data type that needs its dependencies to be tracedlyirect
and adapting the change-propagation algorithm to handlentre
general dependence tracing. The change propagation talgori
itself remains insensitive to the specifics of the data #tires,
which we achieve by providing a unified interface for all gable
data types. From the perspective of a user who is implenséli-
adjusting programs, the changes to the code are minimathiall
requires is to substitute a different library or impleméiota for
the data type. In addition to improving performance, theraagh
can also greatly simplify the analysis of stability since thser
need only consider the operations on the data type instealtitbe
memory accesses inside of it. In Section 2, we explain thileno
of tracing dependencies at the memory cell level in moreildeta
give an overview of our approach, and present algorithmisuse
traceable data types.

We define a relatively simple interface that one must impleme
to support atraceable data typdTDT) (Section 3). It is based
on maintaining an operation trace for each instance anaiaidp
any operation of the standard data type to be invoked or ezl/ok
anywhere in the trace. Such revisions must return a poimter t
the earliest following query in the trace made inconsistgnthe
revision, if any. Implementations @GfDTs do not need to be aware
of the change-propagation algorithm beyond the interfaehave
implemented traceable versions of several data typesdimg
queues, priority queues, dictionaries, and accumulat®est{on
3.1). We note that we do not expect that new data types would be
implemented very often.

To support traceable data types uniformly, we modify change
propagation in some relatively small but subtle ways. Finstead
of storing closures with just the read operations on eadh wel
store a closure for each query @D Ts. In fact, we treat cells as a
TDT instance with read and write operations, and refer to them
as modifiable referencesSecond, as with standard change prop-
agation, during execution we keep a time-ordered prioritgLe
of inconsistent queries (reads), but instead of trackimdnabn-
sistencies for allfDT instances, we only keep the earliest incon-
sistency for each instance. This is critical for efficierftgndling
certain data types (Section 3). We present a formal selfstidg
core calculus that is extensible by arbitrarp Ts (Section 4). We
present a static and dynamic semantics for the core calcmus
cluding change propagation for traceable data types. A kay-c
ponent of the calculus is the open-endedness of the tracidg a
change-propagation semantics to support arbitrary tideeiata
types, without knowledge of how they are implemented.

values such as “time”. Taking advantage of this property,ime
plement a library for algorithmic motion simulation thataéahes
performing motion simulation with self-adjusting prograiy ap-
propriately changing the “time” (Section 7). Specificallye con-
sider an algorithm for computing convex hulls in 3D makingas-
sible to safely implement motion simulation without redudy un-
safe manipulation of the internals of the run-time systermnsure
efficiency as in previous work [4].

Using these benchmarks, we perform an experimental evalua-
tion of the proposed approach (Section 6). The experiméms s
substantial time and space improvements. Even on modewaié i
sizes, the improvements range between a fact8rarid 20 reduc-
tion in from-scratch running time, between a factor4ofind 50
reduction in space, and between a factod @ind5, 000 reduction
in update time compared to the version using only modifiadfierr
ences (memory cells).

2. Overview
2.1 Motivation

Consider a priority queue whose signature is shown in Fidure
The priority queue provides mew operation that takes a compari-
son function on keys returns an empty priority queuejiasert
function for inserting a key and a value into a priority queaied a
delMin function for removing the element with the minimum pri-
ority. Consider a program that uses this priority queue datac-
ture. Using existing self-adjusting computation techesye.g.,
[16, 20]), we can write a self-adjusting version of priorgyeues
and the program.

A self-adjusting program responds interactively to modific
tions to its input data. To achieve this, as the program drscu
the run-time system constructs a trace of the executiochakge-
propagationalgorithm uses this trace to update the output when
the input is modified. In existing self-adjusting compugatiech-
niques, the trace will be constructed by recording openation
so calledmodifiable referencegmodifiablesfor short) that hold
changeabledata, i.e., data that can change over time. For exam-
ple, to make a heap data structure (a priority queue) s@lsadg,
the child pointers of each heap node can be replaced by modifi-
ables. Languages such AdviL [19, 20] make this transformation
relatively straightforward.

By placing data in modifiables, it is possible for a program to
respond to input changes efficiently. Although relativetsaigiht-
forward, this approach suffers from several limitationsst; the
execution is traced at a fine granularity constructing ativelsy
large trace, typically asymptotically as large as the raogrime of
the program. Second, by tracing every operation on a mot#ifiab
the program is slowed down significantly by introducing mas
ably large overheads. Third, our response times could rsbife
cause change-propagation can spend significant time rmanga
the fine-grain dependence information recorded in the trace

As a concrete example, consider a self-adjusting versioa of
heap data structure where each child pointer is placed in @& mo
ifiable. The trace would record every access to the childtpgin
contributing significantly to the size of the program traBénce
the work performed after each child access is essentiallgna c
parison between priorities (keys) and thus relatively §niedc-
ing would slow down the computation significantly. Intenegly,
dependence-tracing at the level of modifiables can alsdtrasu
sub-optimal update performance with change-propagafiorsee

We assess the effectiveness of the approach by extending thes we will need to look further into the structure of theceaAs

AML language [19, 20] to suppoRDTs, and implementing a num-
ber of benchmarks, including heap sort, Dijkstra’s shompesh al-
gorithm, breadth-first search on graphs, Huffman codingd,iater-
val stabbing (Section 6). An interesting propertyTdDTs is that
they enable operating efficiently on certain continuouslyying

an example, we consider a worst-case scenario.

Consider a self-adjusting program that takes as input an in-
teger list, creates an empty queue and inserts the first ateofie
the list into the priority queue. Starting with the secondneént,
the program then inserts each element into the priority eues

signature PRIORITY_QUEUE = sig signature PRIORITY_QUEUE_TRACEABLE = sig

type (Ck,’v) t type Ck,’v) t

val new: (’k * ’k -> order) -> (’k,’v) t val new: (’k * ’k -> order) -> (’k,’v) t

val imsert: (’k,’v) t * ’k * ’v -> unit val invoke_insert: ts * ((’k,’v) t * ’k * ’v) -> ts option * unit
val revoke_insert: ts -> ts option

val delMin: (’k,’v) t -> (°k * ’v) option val invoke_delMin: ts * (’k,’v) t -> ts option * (’k * ’v) option
val revoke_delMin: ts -> ts option

end end
Figure 1. The signature for priority queues. Figure2. The signature for traceable priority queues.

mew () = Qlla—=QI1=Q (1,a) [@=1][2-0Q](2,0) [= 2] 3—-Q] (3,0) [Q = 3] ---[n— Q] (n,a) [Q — 7]
v X v o x v v o x v o X v ... v X /
[pew) = Qb= Q1 = QI (1)) [Q=1][2—-Q] (20) [R = 2] 3= Q] 3,0) [= 3] ---[n— Q] (n,b) [Q — 7]

hev ()= Qlla—=QI1-QR—-12-QQ@—=2B-Q][Q@—3] - [n—Q][Q —n]
v X v v v v v oo/ v
Rev ()= QIb—=Q1-QR—-12-QQ@—-2B—-Q][Q@—3] - [n—Q][Q—n]

Figure3. Two pairs of traces of a hypothetical progrdfat the level of queue operations and comparisons (top) atie #&&vel of abstract
queue operations (bottom). Each pair corresponds to a rétwath inputsfa, 1,2,...,n] and[b, 1,2, ..., n].

ing the element both as a priority and as a value and remoees th in Section 6 both the improvements in the size of the tracetlaed

minimum element by performing @1Min. Assume that the pri- update time can be asymptotic. Challenges to realizingeéizle
ority queue is implemented via conventional self-adjugstompu- data types include the question of whether it is possiblestigh
tation techniques requiring the tracing of every comparideg- and implement them efficiently, whether they can be made & wo
ure 3 (top) shows the traces (represented abstractly) fexeaou- with change-propagation so that programs can still resarid-
tion of P with the input[a, 1,2,...,n] and[b, 1,2, ...,n|, where matically to modifications to their data, and whether they ba

a,b > nanda # b. We write[¢ — @] for an instance of the op- supported naturally without requiring a cumbersome iafegf
erationinsert(Q,,1), [Q — i for an instance of the operation

delMin(Q) that returns as the minimum priority, andi, ;) for a 2.2 Traceable Data Types

comparison of the keysandj. Now comparing the two traces, note
that every comparison in the first trace has the fdina) and ev-

ery comparison in the second trace has the farh) (1 < i < n) ¢ ; ;
. . ype, a traceable version of the data type provides an anasogp-
and no two comparisons match—the difference between the two eration to initialize the data type and two versions, calleadke

traces is9(n). In the figure, we us¢” and X to indicate the oper- andrevoke for each of the remaining operations. These operations

A traceable data typel(DT) permits tracing dependencies at the
level of its operations rather than memory cells. For anrabstiata

ations of the trace that match and that do not match (reseégti essentially allow revisions to the sequence of operatienfopned

Consequently, starting with the first input running the pemg P, on a data structure by inserting new operations (via invake)

changing the input by replacing by b, and performing change- eleting existing operations (via revoke). To enable effitirevi-
propagation would require at least linear time to updateotitput sions, TDTs maintain an internalperation traceof the operations
(a more precise account of the relationship between the tle: performed labelled with their timestamp (of typs).

tances and change-propagation can be found elsewhere [20]) If the abstract data type has an operatign o -> 3, the

This argument extends to a.ny.priority queue .da.ta structure, tyaceable version has the operations
because every time a new keyis inserted, the priority queue
contains only the element with the largest key, either b and
thus a comparison withh must be performed to determine the)))])
minimum priority required by the next operation. It is thustn ~ These operations revise the operation trace by insertingwa n
possible to use change-propagation based on conventietfal s ©P oOperation at a given timestampnivoke_op) and by removing
adjusting computation to update the output in less thamfitiene. an op operation at a given timestamp from the operation trace
Fortunately, there is great potential for improvement. &e this (revoke_op). Both the invoke and revoke operations return an
suppose that we record just the priority queue operatiorthén ~ OPtional timestamp corresponding to the next operaticamyf that
trace and not the comparisons. As shown in Figure 3 (bottta), has been invalidated by the revision. As an example, Figahe®s
traces of the two runs dP are very similar; they differ in only one the signature for the traceable priority queue.

invoke_op: ts * a -> ts option * [
revoke_op: ts -> ts option

operation. To enable change-propagation, invoke and revoke opesation
The example shows that if we can record dependencies at theidentify the first operation of the trace made inconsistenttte

level of priority queue operations instead of the interrahpar- revision by returning the timestamp for that operation. \ak an

isons performed by the priority queue operations, thenrtheetis operationinconsistentf its return value changes after the revision.

smaller and there are fewer differences between the cotignga ~ Suppose for example that we perform the operations
and thus change-propagation can be performed more efficient

This is the main idea behind traceable data types. As we sscu insert(pq,3,3), insert(pq,2,2), insert(pq,1,1),

delMin(pq), delMin(pq), delMin(pq).

The delMin operations will return the valuek 2, 3 in sorted or-
der. If we nowrevoke_insert (pq,1), the firstdelMin opera-
tion will be the earliest affected operation and thus itseitamp
be returned by this revision. Note that in fact all othetMin oper-
ations are inconsistent. In Section 3 we define traceabtetgpes
more precisely, consider several examples, and describehey
can be implemented efficiently. In Section 4 we present aenekt
ble semantics for integratingDTs into a self-adjusting language
including change-propagation.

The proposed interface with invoke and revoke operatioas ar
significantly more cumbersome to use than the standard yja¢a.t
Fortunately, these operations need not be used by the pnogga
at all. In fact, it is possible to present a “user-level” ifidee for
traceable data types that is essentially the same as theastian
version. We describe how to achieve this in the context ofthWL
language.

2.3 AML with Traceable Data Types

The AML language extends Standard ML (SML) with support for
self-adjusting computation. The principal extensions kbLSare
modifiable referencewhich are ML-style references with support
for dependence-tracingdaptive functionshat help identify oppor-
tunities for computation reuse, andchange-propagatioomecha-
nism for updating computations and outputs AML, after a self-
adjusting program executes, the contents of the input nadudifs

structure PQ : PRIORITY_QUEUE_TDT_USER

afun heapsort (compare, 1) =

let
val heap = PQ.new $ compare
afun insert x = PQ.insert $ (heap, x, ()
mfun loop m =

case m of
NONE => NIL
| SOME (kx, O) =>
let val t = loop $ (PQ.deleteMin $ heap)

in CONS(k, put $ t) end
in T
(List.app insert $ 1;
put $ (loop $ (PQ.deleteMin $ heap)))
end

Figure4. Code for heap sort iAML.

as shown in Figure 4. The algorithm first allocates an empgtyrpr
ity queue and inserts all the keys in its input to the priogtieue
(with unit payload). It then constructs the sorted outputdyyeat-
edly removing the minimum element until the queue is empty an
returning them in a list. This algorithm has several notéddgures:
First, it has an optimaD(n log n) running time. Second, but most

may be modified and the output can be updated by calling change importantly, it is highly stable under small modificatiomsits in-

propagation. To support efficient compilation and updatels]L
offers two kinds of function spaces: conventional funcsiof type
«a~->(and adaptive functions of type-$>53. Application of adap-
tive function f to argumenta is written f$a. Adaptive functions,
defined by keywordgfun andmfun, can be either non-memoized
or memoized (respectively), and can call conventional ioncas
well as adaptive functions. Conventional functions arepeymit-
ted to call adaptive functiorts.

put when the trace is at the granularity of priority queueragiens.
Thus, with traceable priority queues, we can obtain an efiicself-
adjusting sorter (our experiments in Section 6 confirms tthaal-
gorithm performs well in practice).

Finally, the self-adjusting version i ML only differs from the
standard SML implementation in the underlined code fragmen
(also highlighted in red) and the use of the user-level ahtme
priority queue. The only major differences are the use ofifradze

Consider a program that uses some (standard) data typge, e.glists where the tail of each cell is placed in a modifiable, tvad the

a priority queue, and suppose that we have a traceable mavgio
that data type. To enable the user to operate on the tracdatale

priority queue functions have the adaptive function type.d&fine
loop as a memoized function as it performs non-constant work.

types in the same way as the standard data types, we provide a This example provides evidence that programming WilhTs
user-levelinterface to the data type that essentially matches the requires little modifications to existing code. Note alsattm-

standard interface with the exception of requiring eachatpm to
be an adaptive function. More specifically, each operatiotyye
a->3 becomesa-$>3. For example, the user-level interface for
the traceable priority queue would be:

signature PRIORITY_QUEUE_TDT_USER = sig
type Ck,’v) t
val new: (°k * ’k -> order) -$> (’k,’v) t
val insert: (’k,’v) t * ’k * ’v -$> unit
val delMin: (°k,’v) t -$> (°k * ’v) option
end

Given a program using the user-level interface to tracedhta
types, our (extendedAML compiler can translate the program to
use the corresponding invoke and revoke operations angratee
them with change-propagation. To this end, the compileeg@rs
the necessary code for tracing the invoke and revoke opasaéind
for finding and re-executing them when necessary duringgdtan
propagation. For example, we can compile some program $est u
the above interface to traceable priority queues showngargi2.

2.4 Example: Heap Sort

stead of using a traceable priority queue, we could also s&ifa
adjusting version of a priority queue that has the samefatder
(e.g., a heap or a treap implemented using modifiables). #s di
cussed in Section 2.1 and further in Section 6, such modfiabl
based implementations, however, perform significantlyseor

25 Example: Dijkstra’sAlgorithm

As another example, we consider Dijkstra’s algorithm fompait-
ing single-source shortest-paths, whaselL code is shown in Fig-
ure 5. The code strongly resembles the SML implementatiap-d
ping the underlined text yields the SML code. We omit somaitiet
to focus attention on the aspects relevant to our interest Dajk-
stra’s algorithm takes a graph and a root node and finds theesho
path distance from the root to every node in the graph. Wessmt
the input graph as a dictionary of nodesgraph), mapping each
node to the list of its neighbors along with the edge weig@is-
ilarly, we represent the output as a dictionary of nodes:€_sp),
mapping each node to its distance to the root. The key iddeialt
gorithm is to maintain a set of explored vertices and thestadices
to the root and expand this set iteratively. For this purpagemain-
tain a priority queuegq-v) of visited vertices and their current dis-
tances. The algorithm starts by inserting the root into theripy

As an example of how a traceable data type can be used in aqueue with distance 0. It then repeatedly visits the vestioethe

user program, we consider AML implementation of heap sort

1Each self-adjusting program has a single entry point whiselfiis an
adaptive function.

order of their current distance by calling the functibspp. Given
a vertexu and its current distancg the functionloop checks ifu
is already visited. If so then it continues by removing thetver-
tex from the priority queue. If not then the exact distanaeufds

structure Dict : DICTIONARY = struct ... end
structure PQ : PRIORITY_QUEUE_TDT_USER
structure List : LIST = struct ... end
type tnode = ...
type t_dist = ...
type t_graph = (t_node, (t_node * t_dist) List.t) Dict.t
afun dijkstra (root: t_node, graph: t_graph) =
let

val dict_sp: (t_node, t._dist) Dict.t = Dict.new $§ O

val pqv: (t_dist * t_node) PQ.t = PQ.new $ O

afun visit (u, d:t_dist) =

let afun ins (v,w) = PQ.insert $ (pq.v, (d + w, v))

in case Dict.lookup $ (graph, u) of

NONE => ()
| SOME ns => List.app ins $ ns
end

mfun loop (u:t_node, d:t_dist) =
(if (Dict.lookup $ (dict_sp, u)) = NONE then
(Dict.insert $ (dict_sp, u, d); visit (u,d))
else ();
case PQ.deleteMin $ pq-v of
NONE => dict_sp
| SOME (d, v) => loop $ (v,d))
in loop $ (root, 0) end

Figure5. Code for Dijkstra’s algorithm ilAML.

found; it insertsu into the output dict_sp) and visits it. To visit a
vertex, it traverses each outgoing edgev) by insertingv into the

priority queue with an updated distance. As with the heapadgo-
rithm, we are able to obtain a self-adjusting version of tgerdthm

without modifying its structure, and we can use both a traleegri-
ority queue or a self-adjusting priority queue implemerigdising
modifiables directly (Section 6 compares these implemiemisit

3. Traceable Data Types

We define an (conventional) abstract data types a quadruple
(7 tdt,S,mk, {op-1, ..., op.n}) consisting of
e atype constructor tdt,
e a state constructa,
e a creation (make) operatiatk, and
e a set of operationsp_i (1 < ¢ < n).
A specificatiorof a data type is a set of state-transformation rela-

tions, one for each constructor or operation. The statestoamation
relation for the constructor maps a given vatu® an initial state

So, Writtenv ks So. The state-transformation relations for the other

operations map a state and a given value to another statenand a

other value, e.g$;v B S'; 0" defines howop_i operation with

argumentv transforms the state from to $” and yields resulv’.

Any data type can, however complex, be specified in this way by

coming up with an appropriate representation for the stateby
specifying the state-transformation function.

To define the traceable version of a data type(r tdt,S,mk,
{op-1, ..., op.n}), we letT denote a totally ordered set of times-
tamps. We define aperation-traceH for a data type as an initial
states, and a sequendét, o1,v1), (t2,02,v2),. .., (tn, On,vn)],
where thet; € T,t; < tiy+1, and each; is an operation of the
form op_k v; that takes some; as an argument to return. Let

vp(H,t) be the value returned by performing the sequence of op-

erations(o1, 02, ...) in H up to timet, inclusive. We say that an
element(t;, 0;,v;) € H of the operation-trace igconsistentif

operation: type state-transformation

o P modref v
modref v; () g<! modref v; v
modref v; v’ o<t modref v'; ()
(ve,v) 8% nod (ve,v)
mod (Ve,v);vq It od (ve,v)50
0= 50

P72Q; (v, v0) = pg PQ+ (g, v0); ()
p72Q;) ™ pgPQ — (vk, v0); (vh,v0)

put : 7 — 7 modref
get : unit — 7

set : 7 — unit

mod : Tcmp X 7 — 7 mod

mget : (7,7')dis — 7’ /

Pq : unit — (73, 7v) Pq
ins : 7, X 7, — unit

min : unit — 7, X 7,

Tablel. Formal specification of modifiables, modular modifiables,
and priority queues.

vp(H,t;) # v;. We say that an operation-trace is inconsistent if
any element is inconsistent and consistent otherwise.

For a data type, thetraceable versiorD,. abstractly maintains
an operation-tracél for each instance and provides the following
operations:

—mk(v) : Returns a new operation-tradé with initial stateS

mk .

(wherev —) and empty operation sequence.

— invoke(H,o0,t) : Computesv vp(H,t), updates the
operation-trace by inserting(t, o, v), and returns and the
time of the earliest inconsistent operation.

— revoke(H,t) : Removes the element with timefrom H (if
any) and returns the time of the earliest inconsistent dioera
We refer toinvoke and revoke (meta-)operations agvisions

and require them to be applied as part akgision sequeneea
sequence of revisions on an initially consistent operatiaoe such
that (1) the times of the revisions are increasing, and (Re&eh
revision at timet, all operation at times beforeare consistertt.

It may seem odd that revisions only return the earliest incon
sistent operation as opposed to all of them. In fact, thificas
because revision sequences require that the earliestsistemcy
is fixed (revoked and possibly reinvoked) before proceetirtie
next one. Fixing the first inconsistency will then return thext
inconsistent operation, if any. This ability to return insgstent op-
erations lazily is critical for efficiency because othemwse would
have to maintain a potentially large sequence of inconsisip-
erations as some become consistent or others become istemsi
and we would not be able to take advantage of subsequenibrevis
fixing inconsistencies. For example imagine invoking antiatthl
insert operation on a priority queue inserting an element with
higher priority than all the others. This will cause all thestr of
operations to become inconsistent. Invoking anothereteMin
operation subsequently, however, would make all operatamm-
sistent by removing the newly inserted element.

As we formalize in Section 4, a traceable data type can be used
to support the underlying data type in self-adjusting cotaton.
This allows a modular way to use new data types without hawing
know anything about the change-propagation algorithnifitse

3.1 Examples

We describe the interface of sevefidD Ts. Sample formal specifi-
cations of abstract data type are given in Table 1.

Modifiables. A modifiable provides the functionality an ML-
style reference with type constructermodref and state con-
structormodref v wherew is a value of typer. This is what we have

informally referred to as memory cells. Modifiable commairds

clude the creation operatigmut and manipulation operations:t

2Multiple revision sequences can be applied to an operatame sequen-
tially, each returning the operation-trace to a consist&te before the next
starts.

for dereference andet for update. Table 1 shows the signature
types and state-transformations. Intuitively, creatingadifiable
with contentsv and then dereferencing the modifiable multiple
times yields an operation-trace with initial statefref v and oper-
ation sequencg(ti, get (),v),..., (tn,get (),v)]. If we change
the initial value to’ then the initial state becomesdref v and the
timestampt; identifies the earliest inconsistent operation. Change
propagation can successively reinvoke each revision taimlhe
consistent sequen¢é 1, get (),v’), ..., (tn, get (),v)].

Modular Modifiables. In some applications the domain of data
may be continuous even when the computation produces atéscr
result, e.g., a program computing the convex hull of a set@f-m
ing points represented combinatorially. In such a casegusiod-
ifiables makes change-propagation sensitive to any chamgmd
recomputation even if the result is the same. In many of thases,
we partition the continuous domain into some discrete nurnbe
sets and consider values equal if they fall into the sameFset.

for signatures such as one in Figure 2. A more complete ge&ori
of the data types and how to implement others can be found else
where [3]. The basic idea behind the implementations is &pke
an augmented version of the operation trace. In particofast
of our structures maintain a data structure for the traceithar-
dered by timestamps and supponrt(7’, v, t) (insertv at timet),
delete(T', t) (delete the element at tint, findPrev(7T', t) (returns
the greatest element ffithat is less thaf) andfindNext(7', ¢). For
a trace withn entries, all these can be implemented(O(log n)
time using balanced trees. Some of our traceable data types a
maintain balanced trees ordered by keys (e.g., the prigtigue,
and modular modifiables).

We first consider the traceable implementation of a modiiabl
(a read/write cell). Our implementation maintains a tinndesed
sequence of operations. Each operation is tagged with the ita
has read or written. To invokeget (read) orput (write) at time
t, we insert the operation into the trace data structure Htthe

example, we may care only about the sign of a real number. Our gperation is aget, then we also uséndPrev(T, t) to access the

motion simulation benchmarks make critical use of moduladim
fiables for storing the time variable.

A modular modifiablellows discretizing a totally-ordered con-
tinuous set to avoid recomputation when modifications daffietct
the discrete outcome. The type of modular modifiablesisod
and the state constructor ésc (v.,v), wherewv. is a comparison
function of typer cmp(= 7 x 7 — order) (whereorder is the
SML order datatype) and is the value of the modifiable. Modu-
lar modifiables are created by theod operation and manipulated
by the modular dereferencing operatiorget: A modular derefer-
ence takes discretizationargumenty, of type (7,) dis which is
a (finite) partition of the continuous typetogether with an assign-
ment of values from the discrete typéto each equivalence class.
Formally, the discretization is represented by allist. . . , ¢,] that
partitionsT into intervals and the assignment is a [i€4, . . . , dx]
of 7’ elements. The result of such a dereference is- d; where
the current value of the modular modifiableds < v < c¢i+1.
Due to the structure of the partition, the outcome of a madula
dereference only changes when the value of the modular modifi

able changes equivalence classes. o
Priority Queues. A priority queuewith 7, priorities andr, val-

ues has typérs,) pq. The state constructor jg PQ where?Q

is a sequence of paik§vyi, v»:)) where entryv,; has priorityvy;.
Priority queue commands include the creation operagignand
manipulation operatiorins for inserting an element, with pri-
ority v and min for deleting the element with lowest priority:
where 2Q + (vi,v,) adds the element, with priority vy, and
PQ — (vk, vy) removes the element, with highest priorityvy, .
Accumulator Modifiables. An accumulator modifiabl@rovides
efficient change-propagation for adding elements from ancota-
tive group and querying the total. The query must come after a
updates. Adding to a (regular) modifiable-based accumuiato
volves fetching the current value of the accumulator andrgjo
the updated sum, which makes the operation sensitive touhe ¢
rent partial sum and thus change-propagation may taker ltimee

in the number of additions. An accumulator modifiable presgic
primitive addition operation that is not sensitive to theeimedi-
ate sums and can change-propagate in constant time by t&ing t
group’s inverse operation to update the result of queryitaa.
Queues and Dictionaries. In addition to the above examples,

traceable versions of many other data structures can béfisgdec
by giving their state-transformations functions. We halg® dor-
mulated and implemented traceable first-in-first-out qaeus un-
ordered dictionaries.

3.2 Implementing Traceable Data Types

We briefly describe how to implement the traceable versiothef
data types described in the previous subsection. In theexbot
this paper, these descriptions indicate how to implememttfans

value returned by the read—the previous element in the traglat
either be gget or put, but both types of operation are stored with
values. Note that a revision sequence requires that allatipes
before timet are consistent; therefore, the value of this previous
element contains the correct value for timeTo revoke aget or
put at timet, we simply delete the operation from the trace. For all
revisions (invokes or revokes) we can dselNext (7, ¢) to return
the earliest inconsistent operation, if any. In particuifathe next
operation is gget and has a different value, then it is inconsistent
and is returned, otherwise nothing is returned. All operetion a
trace withn elements také (log n) time.

The implementation of dictionaries is based on modifiabkes a
described in the previous paragraph. Basically, we crestizralard
hash table, where each entry in the table is a modifiable wsth i
own trace. The first time an operation is invoked on a pasicul
key k, we create a new modifiable for that key with its own trace—
we refer to this asni. Any insert of a key-value paifk, v) into
the dictionary at time will correspond to gput of valuewv into
my, att. Any delete of a keyk from the dictionary at time will
correspond to @ut of value() into my att, wheref is a special
value indicating that the dictionary has no entry at that Kayy
search of a key: at timet corresponds to get my, att. Finally, if
a revoke of an operation on kéyremoves the last operation from
the trace ofmy, then we can deleteqw;, from the dictionary (this
avoids a memory leak).

The implementation of priority queues is beyond the scope of
this paper, but we note that it can be done with two balanced
trees one ordered by time for the trace and the other by key. In
addition, during an update sequence, the implementatidntaias
two additional balanced trees, one for insertions invokedng
the current update sequence and the other for insertioakedv
during the sequence. All operations taR€log n) time. A modular
modifiable is implemented by keeping all the boundary elegsgn
for all mget operations on a modular modifiabie sorted by their
ordering. We call thisS,,,. Invoking or revoking anget operation
onm corresponds to inserting or deleting the partitioning eleta
from S,,. Changing the initial value will identify all partitions
that are crossed by the change of value and return the eaties
inconsistent. An accumulator modifiable is implementedayrby
“adding” to the sum using the commutative operator on ankevo
and subtracting from the sum on a revoke. For any value ofiaer t
the identity, this will return the next read as the earliasbnsistent
operation.

Finally, we use an order-maintenance data structure [13] to
implement time stamps. Simpler alternatives such as usiegérs,
fixed-precision floating-point numbers do not work becaumsy t
do not allow insertions of new timestamps between two adjace

integers. Arbitrary precision real numbers would work big aot
efficient.

4. TheTgt Language

The AML language (Section 2) is compiled into tigt language

by the AML compiler. In this section we present thgt language

to show howTDTs can be integrated orthogonally into a language
with intrinsic support for self-adjusting computation.

The Tgt language provides botevaluationto reduce expres-
sions to values andhange propagatiorto adapt computations to
input changes, and is open-ended to extension byTddy. The
semantics of thel'gt language usetracesto capture the struc-
ture of the computation, which are used by change-propagbi
identify the need for recomputation and the opportunity dom-
putation reuse. The former approach to self-adjusting ctoatipn
used trace actions that correspond to individual memoryatioas.
To supportTDTs, the new approach to self-adjusting computation
uses trace actions that correspond to high-I6MBIT operations.
The invoke and revoke operations DD Ts are used by the seman-
tics of theTgt language to identify which parts of a computation,
i.e., which actions of the trace, are affected by changes.

The Tgt language is a simply-typed-calculus with natural
numbers and recursive functionextended with anemoization
primitive and any number of traceable data typ@®Ts). The
syntax of Tgt is given by the following grammar, which defines
typesr, expressiong, valuesv, and adaptive commands using
identifier metavariableg andzx.
res |nat | 7, — 7| 7tdt
v | caseNwy, e, (z.es) | ef vy
z | zero | succv | funf.z.e |l | Kk
halt v | memoe | mkv,,; v; | 0P v} Varg Uk
Tgt enforces a continuation-passing style (CPS) dlsupllrhaeip
identify opportunities for reuse and computations forxeeition?

The typeres is an opaque answer type for continuations, while
halt is a continuation that injects a final value into thes type.
The CPS discipline allows pure computations (e.g., natouah-
bers and recursive functions) to be introduced by valueseting
inated by expressions, with theselN scrutinee and function ap-
plication argument restricted to be values. Td@seN primitive
case-analyzes a natural numher and branches te. or e; ac-
cording to whether it is zero or a successor number. ikeand
op primitives correspond to schemali® T operations with an ex-
plicit continuationu,. Themk primitive creates &DT initialized
by the seed value,, k, while theop primitive takes the a reference
v; to aTDT and argument valueg,.

Since adaptivity identifies the need for recomputatibgt pro-
grams use an indirection through the store to manipdi&@ s and
isolate the differences between computations. We tadterac to
be a finite map frontocations/ to TDT state constructors; the
notations [¢ — $] denotes the store updated witlé mapped tcs.
Contextd" andX:, andTDT signaturesA are maps from variables,
locations, andr DT commands to types, respectively.

The Tgt language is open-ended to extension by any number
of TDTs. As described in Section 3, BDT is classified by a
type 7 tdt and has a state constructearFurthermore, eachiDT
extends the language with a creation commankl v, vx and
any number of manipulation (i.e., queries and updates) camals
op v Varg Vk; TDT commands are formulated in CPS with an ex-
plicit continuationvy, identifying the computation that follows the

T
€
v
K

3The Tgt language may easily be extended with products, sums, reeurs
types,etc; we have omitted such constructs as they provide no adélition
insight, but are supported by the implementation.

4Previous work shows how to compile a direct-style languade this
continuation-passing style [19].

command and manipulation commands take a location argument
VUl

The typing judgemenE; T" - e : 7 (rules elided) ascribes the
typer to the expressioain the context§” andX. TDT commands
have typeres if their arguments match the types prescribed by the
TDT signature. A creation commanédk must have an argument
vmr Of type 7., and a continuatiorv, expecting ar tdt. A
manipulation commanép must have a location argument of
typer tdt, an argumentq,4 of type 7.4, and its continuationy,
should expect & .s.

Figure 6 gives the evaluation semantlcs ot. The large-
step evaluatlon relatioi’;o; e Yu T';0';v (resp.T:o;k |k
T’;0';v") reduces the expressm,n(resp the adaptlve command
K) under the store to the valuev’ and the updated st_orﬁ(. For
the present time, we suggest that the reader ignord'taad 7"
components; we discuss them in detail in Section 4.1. Thd-aux
iary evaluation relatior |} v’ reduces an expressiento a value
v’; such evaluation is pure and independent of the store.

A mk v,,; v Creation commandngk) generates aDT state
S with seedv,,i. according to the state-transformation semantics,
extends the store with a fresh locatiorf bound tas’, and delivers
£ to the continuationy,. An op ¢ varg v, Manipulation command
(op) fetches theT DT states from the storesr at ¢, performs the
corresponding state-transformation, updates the stahe/vbiound

to the new states’, and delivers the result,..; to the continua-
tion v. For the present timey,,; T’ LS ST ands; Varg; 7%

S vres; T (discussed in detail in Section 4.1) should be read as the

state-transformation judgements s ands; varg 2 5 Vres.

A memoized expressiomemo e simply evaluates the expres-
sion when evaluated from scratamémo/miss), but enables the
reuse of computatiorecross rungluring change-propagation (Sec-
tion 4.1). Thehalt v command yields a computation’s final result
value.

4.1 Change Propagation

In order to update a program’s output in response to chamgiées i
input, achange-propagatiomechanism is employed to re-execute
the portions of the computation affected by the changesarelise
the unaffected portions. The evaluation relation recarftsmation
necessary for change-propagation inaeceT', a sequence ofDT
state and memactionsterminated by a halt action:

mkvkal ‘ opﬁkuaygllfygg

v | ‘X

As | memo®

halt? | A-T

o|T

The evaluatlon relatio; o;e g T';0';0" (resp.T; ok |k
T':0';v") may now be |nterpreted as reducmg the expression
(resp._the command) under the storer and the (optional) reuse
traceT, yielding the value/’, the updated store’, and the compu-
tation tracel” for the current run.

The evaluation of each command extends the computatioa trac
with the corresponding trace action labeled by the releeagti-
ments and results. A halt action carries the final resultevalud a
memo action carries the memoized expression. A creatiooract
records the seed value, the location allocated, and th@ncation.

In order for the semantics to identify the possibility of qmuiation
reuse, eac DT manipulation action records the location accessed,
the argument and result values, and the continuation; ttienais
additionally labeled by a&heckmarkd to indicate its replayabil-
ity during change-propagation. Furthermore, the dynarainam-
tics maintainsconsistencyof the reuse trace, i.e., the prefix trace
of actions with a valid checkmark” are replayable by change-
propagation and the earliest (if any) manipulation actiathwan
invalid checkmarkX must be re-executed by change-propagation.

NSO &

e, v [vn/z]es Y v ef | funf.z.e [vz/z][fun f.z.e/fle J v

v v caseN zeroe; (z.es) || v caseN (succvy)e; (z.e5) J v epvg v
Hopt 1l
nomk 2 - = : : : :
t¢domo v T S0 SHT ”(Z[)g 5,] 5’;‘7"’T - Sif“}’,T, /

- r op=0cf— S 5073V U ;050
el r Tio T 050" o =olt— 5] T o500 Vg T 050 ! 1 Ob Tk Tres VB Z 59 op
; RS ; okl 1™ T;050p Lvarg vy ope’U“T'quT”‘g~T"U"v'
Tio5e g T'; 050 T; 03 mk vy, v i mky™ T 0750 v arg Uk VK OP 7

Tioielg T ;050 cr;T;e'I\gTc Te;onT 050

- memo/miss - memo/hit

T;0; memo e |k memo®-T";0";v T;0; memo e |k memo®-T";0;v T;o;haltv |k halt’;o;v

Figure6. Reductione |} v (top) and evaluatiofi’; o; e g T"; 0”; 0" andT’; o k Jx T";0”; v (bottom).

The trace reparationand operation invocationudgements (Fig- trace because it does not touch the store. Discarding aiameat

ure 7) use the state-transformation rules to maintain tcacsis- action of location/ or a manipulation action on a locatignthat

tency. is not in the store does not affect the consistency of theetrac
The trace reparation judgemest?’ "¢ i takes aTDT state because the location ceases to be in the store; if the locatio

S at location? and an optional reuse trade(with possible incon- It‘;iter red-allocatg(: dl:“bng t(re]valluatmt?k), .théen the rfuie trace WI”t
sistencies in actions that manipulaeto produce the consistent P& Made consistent by the invocation judgement. A manipula

. : Lvarglvres - e
optional tracei” . Intuitively, trace reparation identifies the earliest actionop,, 5™~ " on a location’ that is in the storedp/rev)
inconsistent action that manipulatéand marks it with an invalid ~ Must be explicitlyrevokedbecause it will no longer be performed,
checkmark. A halt action isn't subject to any repair. Anyiact thus the tail of the trace must be repaired relative to theeotistate

that does not manipulaté is preserved and the tail of the trace < = a(f).

is recursively repairedrep/indep). For any action that manipu- Turning to the change-/prgpalgation relation (Figure 8)altec
lates, the state-transformation is simulated on BT states. that we interpretl’; o ~ T"; 075 v" as replaying the computation
If the state-transformation produces the same answergtiunae- ~ race’’ under the store, yielding the value)’, the updated store

; : h
ceives a valid checkmark” and the tail of the trace is recursively 7 and the updated computation tra@é. Replaying a halt ac-
.)) , /). Othenwise tion ylelds the (uncha_nged) computation result. Repla}umgem-
repaired with the simulated néWDT states” (rep/v"). Ott oization action recursively change-propagates the taiheftrace.
the action receives an invalid checkma¥kand the resulting trace \Whenever change-propagation is recursively applied, fuated
is COﬂSiStentl(ep/X). computation trace is extended with an appropriate actiogred
The invocation judgements,.;,; 7’ mk ¢ ST andS;Ua7,g;T‘y ation operationmk;i;jkT‘Z is consistent with the current store if
S'; vres; T" use the corresponding state-transformation judgements ¢ ¢ domo and can lthu_s be replayednk/reuse) by regener-
for creating and manipulatingDT state. Furthermore, since in- ating theTDT states’ with seedv,,,, extending the store with

voking the operation may affect the consistency of actionthée ¢ bound tos’, and recursively cpange-propagating the tail of the
reuse tracel’ (if any) that manipulate locatiod, the trace repa- trace. Amanipulation operatiasp,; 3" is consistent with the
ration judgement is used to maintain the consistency oféneg current store if it has a valid checkmark and thus can be yeqla
trace (mk/invoke and op/invoke). Hence, themk and op (op/reuse) by reexecuting the state-transformation to yield, by
evaluation rules use the invocation judgements to perfostate- invariant, the same result..., updating the store with bound to
transformation and preserve trace consistency; moretremia- the new state’, and recursively change-propagating the tail of the
nipulation action is labeled by a valid checkmark becauss it ~ trace.

consistent with the rest of the execution trace. Change-propagation falls back to execution either nomatéte

The memo/miss rule evaluates a memoization expression istically or because the head action is inconsistent wighctirrent
memo e and yields a traceemo®-7", whereT” is the trace of the ~ Store and thus not replayable. A creation operation is isisbent
evaluation of. A present reuse tradgis itself a computation trace if the location is already in the store and a manipulationratien

from a previous evaluation and is supplied to change-pratpayto is inconsistent if it has an invalid checkmark. Since adticapture
guide the update. In particular, evaluation may reuse coatipns their continuation, a trac& can bereified back into an command
memoized in the previous evaluation: theemo /hit evaluation [T] that represents the rest of the computation:
rule uses thenemoizatiorjudgemento; T; e 2 T. (Figure 8) to [halt®] = haltv [memo®-T"] = memoe
find a reuse trac@. that corresponds to a previous runeofunder -, £,Varg Lvres
a (possibly) different store) and switches to change-matiag 7. [miey T = mKvpp v, [0py, 0 T = opLvarg vk
under the current store. Note that while the expressioray have Thus, change-propagation can reify and re-evaluate ansigtent
free locations, the memoization judgement is mde_pendémhea trace T’ (change), while keeping the tracé for possible reuse
store. Hence, the rule switches to change-propagdtingnder the later. Note that the reifiednk (resp.op) command forgets the
current store to correct any invalid actions in the reuseetfa. (stale) location (resp. result value).

The memoization judgement, T'; e ~ T. searches the reuse We can now sketch the use of change-propagation by a host pro-

trace T for a suffix traceT. that follows a memoization action gram that (re-)evaluates a self-adjusting computatioppSse we
memo®; since some actions may be discarded from the reuse’fface have aT gt programe such that; - - e : res and an initial storer

the remaining tail of the trace needs to be made consistktiviee such that- oo : & & 5. Thus, we may (initially) evaluate under

to the current store. A matching memo actionhit) returns the the storesy and an empty reuse trace, yielding the (initial) result
tail of the trace for change-propagation. Memo andT state v}y and a computation tracg}: o; co; e Jbg Tg: ob; vh. Now, sup-
actions can be discarded by proceeding to match the taileof th pose we have a modified stare such that- o : ¥ W 3. We are
trace. Discarding a memo does not affect the consistencheof t interested in the result; yielded by (re-)evaluating undero . To

Agopyrte sT'R T o M PR
repl repl rept rep/indep - mk Z mk/inv
S;0 o S;halt? halt? S AT = AT Vs T "= 875 T
S Varg zs } Ures ST = repl T re // S3Varg 2z Ulrcs v'/rcs # Ures re /X S; Varg 2 S5 Vres s’ T= repe T
S:opliiambvres o 1RE | Cvarg Lures 7 P S:oplilambres p 1RE | Evary Lures o P —on £ ——— op/inv
Pv,0 P Pv,0 P X Sivarg; T = 83 vres; T

mk ¢

Figure7. Trace reparation; T & 7 (left) and invocationy,,;; 7' =" §'; T ands; varg: T ®f S Vres; T (right).

op/rev
{ ¢ domo) o) =3
hit o Tie B T, o T;e S T, o;Tie BT, ST T e BT,
1) Vyes
oimemo® T e~ T o; nemo® Tie 5T, o; mkl,;”’““ Tie 5T, o; opf,kug‘"gllm Tie~5T, o; opf,'kug‘"gwm Tie~5 T,
¢ ¢ domo Uk %5’
Tio T ;00 o =ofl— 5] Tio0 ~"T'50'50
: — Uk T2 Ve Tt 1,1 mk/reuse
halt’;o ~ halt;o;v memo®-T'; o ~ memo®-T"; 0’ ; v’ mk,7"* T 0~ mky, T 05w
O'(Z) =S S Varg 25’;”7‘65
— ole i T' T/_ roo
o1 =olt— 5] girrL o5t op/reuse [T] =k Tio;x kg T ;050
£,varg L Vres Tio A £,varg L Vres T/ roo change
opv v o op ooV o v Tio~nT ;00
Figure8. Memoizations; T'; e ~> T” (top) and change-propagatiah o ~ T”; ¢’; v’ (bottom).
obtair)v{, we may (/:ha/nge-propagate the tr&eunder the store Benchmark Data Types Used
o1: To; o1 ~ Ti;01;v1. The correctness of change-propagation - —
asserts that the|, o}, andT} obtained via the change-propagation hsort-int priority queue
relation could also have been obtained via the evaluatitatioe: dot-product accumulator
o;o1;e e T1;01;v1. Hence, change-propagation suffices to de- Intersection _ dictionary
termine the output of a program on changed inputs. thfm_an ~ priority queue
stabbing priority queue, counter
5. Extensionsto AML graham-scan priority queue
) dijkstra priority queue, dictionary
We extended theAML language to supporfDTs and imple- bfs queue, dictionary
mented a number of traceable data structures (as specifteecin Motion Simulation modular modifiable
tion 3). TheAML language is implemented as an extension to the -
MLton compiler and a library for self-adjusting computationple- Table 2. Summary of data types used in our benchmarks. Every

mented in Standard ML. Our extensionsAdL consist of some self-adjusting program also use the modifiable data type.

small modifications to the change-propagation implemeantatnd

a mechanism for integratingDTs with change propagation. Like rqve speed and reduce memory consumption. To understand th
earlier implementations of change propagation, we usealyot goyrce of this performance improvement, we study how tgacin

ordered set of timestamps to represent trace elementsh wibig at the granularity of data-structuring operations affehts trace
include theTD.T operations. size and stability. Our findings suggest that tracing opamaton
_ EachTDT is implemented as a Standard ML module (see Sec- ata structures helps reduce the trace size and improviéitgtap
tion 3.2) but integrated with the library for self-adjugficompu- asymptotic factors. In Section 7, we demonstrate the yifitthe

tgtion through the_ use of boilerplatg code. For each invqk_Ha} proposed approach to motion simulation.
tion, we create a timestamp, essentially making the operain el-

ement of the trace. When the change-propagation algoritletas 6.1 Benchmarks

a timestamp, we revoke the operation that is associatedthath
timestamp. During change-propagation, trace elementsnied
re-evaluation are stored in a queue prioritized by theieitamps,
including the inconsistent operations of @D Ts. Since the set of
inconsistent operations dynamically changes over time resat
of invokes and revokes, we adjust the priority queue dynalfyic
to maintain the correct set of inconsistent operations.

We developed a set of benchmark to study the performance char
acteristics of the proposed approach. Each benchmark i©-spe
fied by a static algorithm’s description. Based on this dption,
we implemented three versions: (1) a static program (tsfati
(2) a self-adjusting program that does not utilleBTs (“modref-
based”), and (3) a self-adjusting program that makes u3ebdfs
whenever appropriate (“traceable”). In developing the seste,
6. Experiments we first implemented the static program and transformedtdt &n
self-adjusting program using approaches taken in prewear.
We empirically investigate the performance of the propoapd The traceable version is identical to the modref-basedamrex-
proach. We use a set of diverse benchmarks to compare the spaccept the traceable version makes calls to traceable daietistes
usage and time performance of programs usiiyTs to that of whereas the modref-based version makes calls to modrefitias
programs using standard, modifiable-based implementatibime plementations of data structures. We summarize in Tableéh&1
results show that traceable data structures significarglp hm- data types used in each benchmark.

— Heap sort (hsort-int): sort an integer list using the standard
heap sort algorithm.

— Dot product (dot-product): compute the dot product of two
real-number vectors represented as a list of ordered gajrs,

first computing the product for each component and using an

accumulator to compute the sum.

— List intersection (intersection): compute the intersection of
lists ¢, and /2, by inserting the elements éf into a dictionary
and selecting the elements &f that are present in the dictio-
nary.

— Huffman code (huffman): construct a Huffman tree for a list
of keys and frequencies using the standard Huffman algorith

— Interval stabbing (stabbing): take as input a list of intervals
I = {las,b:;)}7—, and a list of querie®) = {g¢;}}~,, and
report for each query; how many intervals this query “stabs’
(i.e., the size of the seft(a;,b;) € I : a; < ¢; < bi}). We
present a plane-sweep algorithm: First, insert into a jpyior

4

queue the endpoints of all the intervals and the query values

known as events, and set initialize a counteto 0. Then,

to answer queries, consider the events in an increasing orde
of their values, incrementing the counter on a left endpoint

decrementing it on a right endpoint, and outputting the taun
value on a query.

— Graham Scan (graham-scan): compute the convex hull of a

are simply the numberkto n, and the frequencies are random in-
tegers drawn from the rande, 10n]. Forstabbing, the endpoints
and query values are random numbers in the rdfge/10] cho-
sen uniformly at random. For convex hulls, we generate mpyt
drawing points uniformly from the circumference of a uratius
circle. This arrangement is known to be a challenging patier
many convex-hull algorithms. For our graph benchmarks, ame g
erate random, connected graphs with approximagélyseparators,
mimicking the fact that many real-world graphs have smalbse-
tors (e.g.n'7°).

6.4 Metricsand Measurements

The metrics for this study argl) the time to run a program from
scratch, denoted by; (2) the average update time after a modifi-
cation, denoted b¥,, and(3) the space consumption, denoted by
S. To measure the second metric, for example, in list-baspdrex
ments, we apply a delete-propagate-insert-propagatécséseh el-
ement (i.e., in each step, delete an element, run changegetion,
insert the element back, and run change-propagation) aittbdhe
end-to-end time byn, wheren is the list's length. This quantity
represents the expected running time of change-propagéti&
random update to the input is performed. We can use this measu
ment in graph experiments, where here the delete-propauss-
propagate is applied to each edge in turn. All measuremeegits w
taken on a standard Linux machtne

We measure the space consumption by noting the maximum

set of points in 2D using the Graham'’s scan algorithm (more in amount of live data as reported ByML’s garbage collector. This

Section 6.8).

— Dijkstra (dijkstra): compute the shortest-path distances in a
weighted graph from a specified source node using Dijkstra’s
algorithm and output a dictionary mapping each node to its

distance to the source.
— Breadth-First Search (bfs): perform a breadth-first search,

which computes the shortest paths in an unweighted graph fro

is an approximation of the actual space usage because garbag
collection may miss the high-water mark.

When measuring time, we carefully break down the execution
time into application time and garbage collection (GC) tirhre
these experiments, we have found that GC is at 0%t of the
execution time. For this reason, we only report the appticatme
to isolate the GC effects and highlight the asymptotic penfmce.

a specified source node and outputs a dictionary mapping each®> Modref-based Programs vs. Traceable Programs

node to its distance to the source.

6.2 Modref-based Data Structures
We implemented modref-based data structures for everytgpéa

The first set of experiments studies hdW Ts provide the perfor-
mance benefits over traditional, modref-based implemienstRe-
call thatT; is the time to run a program from scratch dhglis the
average time that change propagation takes to perform aateipd

used in the benchmarks. These implementations may not be theTable 3 shows the performance of our benchmark programs; com

best one can obtain using modifiables alone, but they aremeas
able baselines because we believe they are representhtiviead

a programmer with significant background in self-adjustiogn-
putation would come up with after some optimization. Theuacc
mulator data structure is implemented by maintaining a fradde
list and running a self-adjustingiold operation to obtain the so-
lution. Both the dictionary and priority queue data struetuare
implemented using the Treap data structure. For prioritgugs,
we found that Treap is more stable than common alternatevgs, (
leftist heap, binary heap). The queue data structure isradutdby
essentially transforming a standard purely functionallementa-
tion of a queue, one which maintains two lists; however, wee ar
especially careful about when the front list is reservedrioagce
stability.

6.3

We use randomly generated data sets for all the experiniszits.
be the target input size. For the sorting benchmarks, wergena
random permutation of1, 2, ...,n}. Fordot-product, we gener-
ate random vectors by picking floating-point numbers uniilgr
at random from[0.0, 10.0] (with 5 significant digits). Forinter-
section, We generate a pair of lists of lengthsand m by pick-
ing integers uniformly at random from the sf, ..., ¢}, where

t = 1 min{n, m}; this choice oft ensures that the two lists have a
common element with high probability. Fbaffman, the alphabets

Input Generation

paring the traceable versions to their modref-based couentis.
Note that forgraham-scan, the modref-based program uses merge
sort whereas the traceable program uses heap sort; the fmodre
based version of heap sort is too slow except for extremebllsm
inputs. We explore this in more detail in Sections 6.8 and 6.9

We find that compared to the modref-based programs, the-trace
able versions arg-20 times faster to run from scratch ad€5000
times faster to perform an update. Moreover, traceabléores gon-
sumed—50 times less space than the modref-based ones. We remark
that these experiments involve relatively small input sizecause
with larger inputs our experiments with some modref-bagatia
cations require too much time to complete.

6.6 Traceable Programsvs. Static Programs

Our second set of experiments, shown in Table 4, draws a com-
parison between traceable programs and static prograrastifyd
ing the effectiveness of the approach in more absolute tefirst,
consider the overhead column, calculated as the ratio ofrtine-

5Technical Setup: Our experiments were conducted or2#Ghz Intel
Xeon E5405 with 32 GB of memory running Ubuntu 8.04 (kernél.24-
19). Programs were compiled using tieML compiler [19], a modi-
fied version of the MLton compiler version 20070826, with thetion
“~runtime ram-slop 0.9 gc-summary” These options direct the run-
time system to make available 90% of the physical memory e¢obnch-
mark and report statistics about garbage collection (GC).

Experiment Size Traceable Modref-based Modref-based -+ Traceable

N T, (ms) Ty, (us) S (MB) T; (ms) T, (us) S (MB) T; Tu S
hsort-int 10® 7.50 35.00 0.61 85.00 27695.00 14.04 11.33 791.28 23.02
dot-product 10° 280.00 6.75 52.88 872.50 121.55 223.80 3.11 18.00 4.23
intersection 10° 1372.50 82.00 382.78 11207.50 1948.45 1509.17 8.16 23.53 3.94
huffman 10* 157.50 492.00 22.13 2575.00 2530000.00 707.61 16.34 5142.28 31.98
stabbing 103 17.50 115.00 1.92 240.00 98195.00 23.56 13.71 853.87 12.27
graham-scan 10* 375.00 265.50 24.90 1542.50 1105.50 277.24 4.11 4.16 11.13
bfs 10° 37.50 845.56 2.74 717.50 23784.07 139.39 19.13 28.12 50.82
dijkstra 103 42.50 1160.03 2.74 725.00 34528.30 72.41 17.05 29.76 26.42

Table 3. Traceable vs. modref-based implementaticfis(in ms) is the from-scratch execution timg, (in ws) is the average time per
update, and (in MB) is the maximum space usage as measured at garbagetanil.

Experiment Size Traceable Static Overhead Speedup

N T; (ms) T, (us) S (GB) T; (ms) (SACT;)/(staticT;) ((staticT;)/SACT,
hsort-int 106 14390.00 59.02 1.75 2599.75 5.5 4.4 % 10*
dot-product 10° 2787.50 7.45 0.44 100.25 27.80 1.3 x 10*
intersection 106 12820.00 74.91 2.19 1091.50 11.74 1.5 x 10*
huffman 106 22975.00 1021.04 1.08 6447.25 3.56 6.3 x 10°
stabbing 106 38832.50 202.11 1.70 10609.75 3.60 5.2 x 10*
graham-scan 10° 4307.50 297.30 0.70 547.75 7.86 1.8 x 103
bfs 10* 445.00 1310.59 0.12 47.50 9.36 36.2
dijkstra 10* 490.00 1783.68 0.12 52.50 9.33 29.4

Table 4. Traceable SAC versus statif; (in ms) is the from-scratch execution time, &figd (in iS) is the average time per update. Update

times are reported imicroseconds (uS).

scratch run of the traceable implementation to that of tlicst
implementation. This quantity represents the overheati®fpto-
posed approach (e.g., due to dependence tracing, runtishensy
We find the overhead to relatively small: the traceable vesare
about a factor ofl0 slower than their static counterparts, except
for dot-product, which is about 30 time slower. We believe this is
because the benchmadist-product is relatively lightweight com-
putationally.

Second, consider the speedup column, calculated as thefati
the static from-scratch run time to the update time. Resitav
that the traceable versions can perform updates many ooders
magnitude faster. One exception is our graph algorithmsctwh
are output-sensitive and may need to update the results @t ma
nodes even after a small modification, e.g., deleting a siadbe
can change the shortest distance of many nodes. We distsigs th
greater depth next.

From-Scratch Run: Time (in ms)
1000

T T T T
dijkstra (modref-based) —+—
bfs (modref-based) --%--
dijkstra (traceable) ---%--
bfs (traceable) 8- 3

800 -

600

400

200

0 nr.
1000

800

0 200 400 600

Figure 9. From-scratch runs with our graph benchmarks: timing
(vertical axis inms) as input size (horizonal axis) varies.

Comparing Avg. Update Time (in ms)

50 T T T T

dijkstra (modref-based) ——
bfs (modref-based) --%--
dijkstra (traceable) ---%--

bfs (traceable) g

40 -

30 -

20 [

10

1000

Figure 10. Updates with our graph benchmarks: timing (vertical
axis inms) as input size (horizonal axis) varies.

6.7 Graph Algorithms

Graph algorithms can be challenging with previous appresc¢h
SAC. We discuss howrDTs can help overcome some of these
challenges. While previous SAC approaches worked well ob-pr
lems with structured data (e.qg., lists and trees), comjpmstnvolv-
ing unstructured data (e.g., graphs) often require userdindata
structures whose traditional self-adjusting versionsreguire the
tracing and updating of large amount of dependencies. atdee
data types address this problem by reducing the amount oirezh
tracing and exploiting problem-specific structures, thgréramat-
ically decreasing the update time.

We consider two algorithms: the Dijkstra’s single-sourbers
est path algorithmdjjkstra) and the classic breath-first-search al-
gorithm (fs). Our implementations follow the standard textbook
descriptions (Figure 5 shows the pseudo-codedfikstra). Both
algorithms use a dictionary to represent a graph.

From-Scratch Run: Time (in ms) Comparing Avg. U

3000 12

pdate Time (in ms) Comparing Avg. Update Time (in ms)

T T T T T T T T T
merge-sort —+— merge-sort —+— quick-hull —+—
2500 + quick-sort ----] 1 quick-sort ---- i graham-scan: merge-sort --3--
hsort-int traceable ---%-- hsort-int traceable ---%-- 15 graham-scan: quick-sort ---%-- |
2000 : graham-scan: hsort traceable &
SRV S -1
1500 1 x*—x"x“*m*_—— *
1000 e e ewromennn P ETT
0.5 X i
500 NI - B o N ¥ SR [TR
0 0 1 1 1

20

Figure 11. Detailed measurements for the sorting and graham-scamiegres: timing (vertical axis ims) as input size (horizontal axis

in thousands of elements) is varied.

Trace Size (in thousands): hsort traceable
20

Trace Size (Normalized by hsort traceable)

Avg. Trace Difference (log scale)

14
12
10

hsort traceabl

15

o N A O

hslon modrlef-basedI —o—l
quick-sort =---

I hslort modréf-based I—o— '
quick-sort -=%--

le ---%-- hsort traceable ---%--

b R R

0 200 400 600 800 1000 0 200 400

600 800 1000 800 1000

Figure12. Trace size (irthousandsof trace elements) and average trace difference (in traeesits on a log scale) of sorting benchmarks
as input size is varied: trace size of traceable heap sdt), lece size of quick sort and modref-based heap sort amalized by the trace

size of traceable heap sort (center), and average traeedtiffe (right).

Figures 9 and 10 contrast the performance of traceableoversi
of shortest-path algorithms with that of the traditionalpdref-
based versions. Figure 9 shows from-scratch executionstiofie
dijkstra and bfs. Both perform similarly, and their traceable ver-
sions are significantly faster than their traditional vensi, by more
than an order of magnitude at peak. Figure 9 shows the avemge
date times for an edge deletion/insertion. Again, both berarks
perform similarly and the traceable versions are signiflgdaster
than the traditional, by approximately an order of magretud
N = 1,000.

We note that botidijkstra andbfs are highly output sensitive al-
gorithms. Since inserting/deleting an edge can changehtbreest-
path distances on a large number of nodes, these benchnrarks a
highly output sensitive. Specifically, if the shortestipdistances
change ont nodes, both benchmarks will need to update atides,
requiring at leasf)(¢) time.

6.8 Sortingand Convex Hulls

Another noteworthy feature of thHEDT framework is modularity,
specifically the fact that we can often enjoy substantidiggerance
improvements by simply replacing the modref-based imptaae
tions of data structures with the compatible traceableioess As
an example, consider the problem of computing the conveboliul
2D data points. Given a set of 2D points, Graham’s scan dlgori
first orders the points by the coordinates and computes the con-
vex hull by scanning the sorted points. Here we compare doetr
able version of our heap sottsprt) andgraham-scan benchmarks
with other modref-based algorithms considered in previoask.
The fastest version turns out to be identical to thegpktham-scan
code, except the sort routine is now a traceable heap sort.

As shown in Figure 11 (left and center plots), traceable lseatp
outperforms the quick-sort and merge-sort algorithms larlgen
order of magnitude for both from-scratch runs and updategeS
graham-scan uses sorting as a substep, it shows the same perfor-
mance trends (rightmost plot). Compared to the previousreiod

based implementation of the quick-hull algorithm [gfaham-
scan is extremely fast.

6.9 Trace Sizeand Stability

Our empirical measurements thus far illustrate the perémce
benefits of TDTs, both in running time and space consumption.
Here we investigate the question of whether these improxsne
are related to potential constant factor improvements értin-
time systems or to the benefits ®DTs as we expect them to be.
Our measurements suggest the latter and indicate asymptoti
provements in performance. To this end we consider two adistr
measures: trace size and trace stability. Trace size mesath@ size

of the memory consumed. Trace stability measures how mueh th
trace changes as a result of an input modification—this althy
determines how fast the program can respond to modificatlans
our experiments, we measure the trace size by the numbeaoef tr
elements, and the trace stability by counting the averagebeu

of trace elements created and deleted during change pri@aga
after a single insertion/deletion. These measures argamitent

of the specifics of the hardware as well as the specifics ofakee d
structures used for change propagation—they only deperttieon
abstract representation of the trace. They are, howevecjfgpto
particular self-adjusting program and class of input clesrgpnsid-
ered. As an example, we consider sorting with integers ifpaity
hsort-int with traceable and modref-based priority queues, and a
self-adjusting implementation of quicksort.

Figure 12 (leftmost) shows the trace size for traceable kegp
as the input size increases. Regression analysis shows$eatfér
with 10n 4 12 (n is the input size), providing strong evidence that
the trace size of traceable heap so®i%). This is consistent with
a simple analytical reasoning on traces: since we recoreratkm-
cies at the level of priority-queue operations and sincep+seat
performs linear number of such operations, the trace heatisize.

Figure 12 (center) shows the trace sizehedrt-int using both
traceable and modref-based priority queues normalizeuettrace

Event Based Simulation upto 15000 points
800

Speedup: Fromr-Scratch / Update Time

Kinetic simulation for 5000 points

6 T T T T T T
700 | speedup =——+—
600 |-
500 |-
400
300 |
200 |

100

IUpda’(e tin|1e per evelnt (in ms)l—o— . .

T T T T T
total time (in s) for delta time-step =——+— _|

1 500

400

7 300 B
1 1 1 1 1

0
0 3000 6000 9000 12000 15000 0 3000 6000

9000 12000 15000 0 25 50 75 100

Figure 13. Left: Time per kinetic eventCenter: Speedup for an updatRight: Total simulation time (seconds) with time-slicing.

size of the traceable heap sort. The figure suggests thatabest
of traceable heap sort are by a factor @flogn) smaller than
those of the modref-based. This explains why traceable kegp
has a significantly smaller memory footprint than the modesed
counterpart.

Figure 12 (right) shows our measurements of average trace

difference on a vertical log scale for a single insertiotgtien.
Trace difference is constant for traceable heap sort, Isecagingle
insertion/deletion requires inserting/deleting a simmlerity queue
operation from the trace. The modref-based implementdteap
sort appears to have super-logarithmically larger trafferénce.
The reason for this is the internal comparisons traced byntidref-
based priority queues. This finding explains the differeimcthe
runtime performance between the two implementations op hea
sort.

Figure 12 also compares the traceable heap sort to our self-

adjusting quicksort implementation, which has been thetrabs
ficient self-adjusting sorter. Traceable heap sort appkeatsr by
at least a moderate constant factor.

7. Motion Simulation

With traceable data types, programs can natively and shégidle
continuous-domain input, so that the output may be upddfed e
ciently when the input changes. We consider motion simushiadis
an interesting application of this capability. Consideragoam P
that computes a geometric property (e.g., convex hull) ofvang
set of static objects (e.g., points). In motion simulatiee, want to
compute the output P as the objects move continuously, i.e., their
coordinates are a function of “time”. With traditional appches,
motion simulation can be performed by time slicing and regom
ing the output at fixed intervals. This, however, is inactaitze-
cause it only approximates the times at which the output gésn
and inefficient because it cannot take advantage of theagiityibf
output at consecutive intervals. When we have no advancedlkn
edge of how the points move, time slicing can be the only optio
In many cases, however, we can represent the coordinatesvef m
ing objects with polynomials of time and find exactly the gsiim
time at which the output can change by finding the roots obaert
polynomials (e.g., [7]). We call this a@vent-based simulation

We implement a library for motion simulation by using both
event-based and time-slicing simulation techniques wikedlle-
ing advantage of self-adjusting computation to update the o
put. The library allows the “time” to be set arbitrarily andes
change-propagation to update the output. For performanee,
use modular modifiables (Section 3) to represent outcomegg-of
ometric tests. The library consist &f 200 lines of AML code
supplying primitives for polynomials, geometric operaso and
performing motion simulation. As benchmarks, we implement
self-adjusting versions of several 2D convex hulls aldonis
and one 3D convex hull algorithm called incremental-hul al

gorithm. We also implement a visualizer that helps us oleserv
motion simulations in real time by simultaneously runnirge t
visualizer and the self-adjusting program performing thma-s
ulation. Some example movies can be found on the web site
http://sites.google.com/site/sacmotion/.

Figure 13 shows some experimental results with 3D hullsgusin
event-based approach. For both figures the horizontal axisei
input size consisting of points (up to 15000). The plot onlgfe
shows the average time to update the output by change priqaga
after changing the time in an event-based simulation (aestaken
overn updates for each input sizg. The update time appears grow
slowly (probably poly-logarithmically) with the input €z The plot
on the right shows that updates are nearly three orders afitnag
speedups for larger inputs; speedups are computed by cimgpar
static from-scratch execution.

Imagine performing motion simulation by recomputing tha-co
vex hull periodically every milliseconds, i.e., by time slicing. If
is reasonably small, we expect the output computed at catigec
intervals to be similar. Self-adjusting computation akows to take
advantage of this similarity. Figure 13 shows the total $&tion
time for varying interval sizes with 5000 moving points. THui-
zontal axis representsin milliseconds and the vertical axis repre-
sents the total simulation time. As the interval size insesgthe to-
tal simulation time decreases quite dramatically esplgdratially,
because as the interval size increases, more events caodesged
simultaneously and fewer events occur in total.

Finally, although we do not discuss here in detail, being abl
to handle continuous-domain inputs makes a broad range df mo
ifications possible. For example, our motion simulatorwasiche
time to be set to any value, even in the past and update thetoutp
efficiently.

8. Related Work

The problem of having computation respond to slowly chaggin
data has been studied extensively. Early work in the progrizig
languages community, broadly calledtremental computatigrio-
cused on developing techniques for translating statieatonal
programs into incremental programs that can respond atitcatia
to input modifications. Recent advances on self-adjustimgprita-
tion have generalized these approaches and dramaticaihpuad
their effectiveness. The algorithms community devisedadyic
and kinetic data structures to address these same probléiss.
section is a brief survey of related work in these two areaited
information can be found elsewhere [7, 11, 14, 24].

Incremental Computation. The most effective incremental com-
putation techniques are based on dependence graphs, nagiomiz
and partial evaluation. Dependence graph techniquesddcerde-
pendencies between data in a computation and rely on a change
propagation algorithm to update the computation when tpetin

is modified (e.g., [12, 18]). These techniques have been show

to be effective in some applications, e.g., syntax-dickc@mputa-
tions. They are not general-purpose because they do net Hio
change-propagation algorithm to update the dependencetiste.
For example, the INC language [27], which uses static degacel
graphs, does not permit recursion. As an alternative tortipee
graphs, memoization (also called function caching) has bees-
tigated (e.g., [1, 17, 23]). This classic idea dating bacthtolate
1950's [9, 21, 22] applies to any purely functional progrand a
therefore is more broadly applicable than static deperelgraphs.
In incremental computation, memoization can improve eficy
when executions of a program with similar inputs performiksim
function calls. This turns out to be relatively rare: it iseof the case
that small input modifications can prevent reuse via mentioiza
as the arguments to many functions are modified. Partia¢imen-
tal computation with partial evaluation [15, 26] requirks user to
fix the partition of the input that the program will be speiziat
on and can then process modification faster by partiallyuatalg
the program with respect to the fixed part of the input. Thenmai
limitation of this approach is that it allows input modificats only
within a predetermined partition.

Self-Adjusting Computation. Self-adjusting computation com-

bines dynamic dependence graphs [2] and a form of computa-

tion memoization [5] to achieve efficient updates. Variaftself-
adjusting computation have been implemented in severall&os
guages such as C [16], Java [25], Haskell [10], and SML [18¢ T

approach has been shown to be effective for a reasonablyl broa

range of problems (e.g., [4, 5]. Recently, techniques nesbby
self-adjusting computation have resulted in an efficiegbathm
for dynamic maintenance of well-spaced point sets, sgtiimopen
problem [6].

9. Conclusion

We present an approach to tracing dependencies in congngati
at the level of (abstract) data types operations. Since tineber
of accesses to an abstract data type can be asymptoticsdlyhian

the number of accesses to memory, our approach can asymptoti
cally reduce the number of dependencies to be traced. Fom-exa

ple in heapsort there are onfy(n) accesses to the heap (priority

queue) instead @D (n log n) total operations, and indeed our exper-

iments show an order of magnitude improvement. In the cofex
self-adjusting computation, these techniques transtatamatic

improvements in space and time. Furthermore in some cases th

trace with respect to the data type operations can be stabte e
if at the memory cell level it is not. This can greatly imprave
performance of change propagation, as seen in the Huffmaa co
benchmark.

References

[1] M. Abadi, B. W. Lampson, and J.-J. Lévy. Analysis and kiag
of Dependencies. IRroceedings of the International Conference on
Functional Programmingpages 83-91, 1996.

[2] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive furaial
programming. ACM Transactions on Programming Languages and
Systems28(6):990-1034, 2006.

[3] U. A. Acar, G. E. Blelloch, and K. Tangwongsan. Non-oldiys
retroactive data structures. Technical report, Carnegafiod Uni-
versity, 2007.

[4] U. A. Acar, G. E. Blelloch, K. Tangwongsan, and D. Tigho.” Robust
Kinetic Convex Hulls in 3D. InProceedings of the 16th Annual
European Symposium on Algorithn8eptember 2008.

[5] U.A. Acar, G. E. Blelloch, M. Blume, R. Harper, and K. Tamgngsan.
An experimental analysis of self-adjusting computati®®@CM Trans-
actions on Programming Languages and Systems (TOPRL3%E)):
3:1-3:53, 2009.

[6] U. A. Acar, A. Cotter, B. Hudson, and D. Tirkoglu. Dynanwell-
spaced point sets. I8CG '10: Proceedings of the 26th Annual
Symposium on Computational Geomef§10.

[7] P. K. Agarwal, L. J. Guibas, H. Edelsbrunner, J. Ericksbh Isard,
S. Har-Peled, J. Hershberger, C. Jensen, L. Kavraki, P.IKbElLin,
D. Manocha, D. Metaxas, B. Mirtich, D. Mount, S. Muthukristm
D. Pai, E. Sacks, J. Snoeyink, S. Suri, and O. Wolefson. Atyoic
issues in modeling motiolACM Comput. Sury34(4):550-572, 2002.
ISSN 0360-0300.

[8] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quickhul
Algorithm for Convex Hulls. ACM Trans. Math. Softw22(4):469—
483, 1996.

[9] R. Bellman. Dynamic Programming Princeton University Press,
1957.

[10] M. Carlsson. Monads for Incremental Computing. Rroceedings
of the 7th ACM SIGPLAN International Conference on Funetion
programming pages 26—35. ACM Press, 2002.

[11] Y.-J. Chiang and R. Tamassia. Dynamic algorithms in gotational
geometry.Proceedings of the IEEB0(9):1412-1434, 1992.

[12] A. Demers, T. Reps, and T. Teitelbaum. Incremental &Eat@n of
Attribute Grammars with Application to Syntax-directediteds. In
Proceedings of the 8th Annual ACM Symposium on Principles of
Programming Languagepages 105-116, 1981.

[13] P. F. Dietz and D. D. Sleator. Two algorithms for mainiag order
in a list. In Proceedings of the 19th ACM Symposium on Theory of
Computing pages 365-372, 1987.

[14] D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graglgorithms.

In M. J. Atallah, editorAlgorithms and Theory of Computation Hand-
book chapter 8. CRC Press, 1999.

[15] J. Field and T. Teitelbaum. Incremental reduction ie thmbda
calculus. InProceedings of the ACM '90 Conference on LISP and
Functional Programmingpages 307-322, June 1990.

[16] M. A. Hammer, U. A. Acar, and Y. Chen. CEAL: A C-based laage
for self-adjusting computation. IRroceedings of the 2009 ACM SIG-
PLAN Conference on Programming Language Design and Impieme
tation, June 2009.

[17] A.Heydon, R. Levin, and Y. Yu. Caching Function CallsitiisPrecise
Dependencies. IRroceedings of the 2000 ACM SIGPLAN Conference
on Programming Language Design and Implementatjpeges 311—
320, 2000.

[18] R. Hoover.Incremental Graph EvaluatiorPhD thesis, Department of
Computer Science, Cornell University, May 1987.

[19] R. Ley-Wild, M. Fluet, and U. A. Acar. Compiling self-ptting
programs with continuations. IRroceedings of the International
Conference on Functional Programmir2008.

[20] R. Ley-Wild, U. A. Acar, and M. Fluet. A cost semantics feelf-
adjusting computation. IfProceedings of the 26th Annual ACM
Symposium on Principles of Programming Langua@eg9.

[21] J. McCarthy. A Basis for a Mathematical Theory of Congtigin. In
P. Braffort and D. Hirschberg, editor§omputer Programming and
Formal Systemgages 33-70. North-Holland, Amsterdam, 1963.

[22] D. Michie. "Memo” Functions and Machine LearningNature 218:
19-22, 1968.

[23] W. Pugh and T. Teitelbaum. Incremental computation fuigction
caching. InProceedings of the 16th Annual ACM Symposium on
Principles of Programming Languagesages 315-328, 1989.

[24] G. Ramalingam and T. Reps. A Categorized Bibliographyirere-
mental Computation. IRroceedings of the 20th Annual ACM Sympo-
sium on Principles of Programming Languagpages 502-510, 1993.

[25] A. Shankar and R. Bodik. DITTO: Automatic Incremereation of
Data Structure Invariant Checks (in Java) Plimceedings of the ACM
SIGPLAN 2007 Conference on Programming language Design and
Implementation2007.

[26] R. S. Sundaresh and P. Hudak. Incremental compilatiarpartial
evaluation. InConference Record of the 18th Annual ACM Symposium
on Principles of Programming Languaggsges 1-13, 1991.

[27] D. M. Yellin and R. E. Strom. INC: A Language for Increntah
Computations. ACM Transactions on Programming Languages and
Systemsl13(2):211-236, Apr. 1991.

