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1. INTRODUCTION
This note and the accompanying video illustrate our so-

lution to kinetic 3D convex hulls using self-adjusting com-
putation. First introduced by Basch, Guibas, and Hersh-
berger [5], the kinetic approach to motion simulations re-
quires maintaining a data structure along with a set of cer-
tificates: each certificate is a comparison and its failure time
(the time at which the outcome of the comparison changes).
To simulate motion, an event scheduler updates the certifi-
cates in chronological order of their failure times and invokes
an update procedure that keeps the data structure consistent
with the certificates. Even though kinetic data structures
for many problems have been proposed and some have al-
ready been implemented [12, 11, 10, 6], the problem of ki-
netic maintenance of 3D convex hulls has remained essen-
tially open [9] (for results on the dynamic version, see Chan’s
paper [7] and references thereof).

Traditional approaches to kinetic motion simulation re-
quire the users to design and implement the update pro-
cedure by hand. Recent work proposed an alternative ap-
proach based on self-adjusting computation [4]. The ap-
proach relies on a generic change-propagation algorithm to
update the data structure. Self-adjusting computation [2,
1] is a (general-purpose) technique for making static algo-
rithms dynamic. While a static algorithm assumes that its
input does not change, a dynamic algorithm can respond
to changes to its data, including changes to the outcomes
of comparisons, by running the change-propagation algo-
rithm. When paired with an event scheduler, the approach
enables kinetizing a program that computes properties of
static, non-moving objects. The advantages of the approach
include the ability to compose kinetized algorithms and the
ability to handle integrated dynamic and kinetic changes au-
tomatically. Furthermore, the user needs to code, maintain,
and verify correctness of only the static algorithm, because
the kinetic version is guaranteed to produce the same output
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as the static algorithm if executed at that moment.
In the self-adjusting computation model, as a static al-

gorithm executes, we construct a dynamic data structure,
called a dynamic dependence graph (DDG), that represents
the operations performed during the execution. The op-
erations can be additions, multiplications, and conditional
branches. The nodes of a DDG represent blocks of executed
operations, and the edges represent dependence information
between nodes. Bodies of function calls constitute a nat-
ural notion of blocks in practice. Given a DDG, and any
change to computation data, we update the computation by
running the change-propagation algorithm. The algorithm
identifies the affected blocks that use the changed data and
re-executes the earliest affected block that does not depend
on other affected blocks. Depending on the operations in
a block, re-execution can affect other blocks by changing
their data, create new blocks, or delete existing blocks due
to branch operations. The change-propagation algorithm
recovers previously executed blocks via memoization.

The asymptotic complexity of change propagation for a
particular class of changes (e.g., an insertion/deletion) can
be analyzed by representing the execution by their traces
and measuring the edit distance between them. For a large
class of computations, traces can be defined as sets of exe-
cuted operations, and trace distance can be measured by the
symmetric set difference of the sets of executed operations.
This analysis technique is called trace stability [1, 3].

Previous work evaluated the effectiveness of self-adjusting-
computation approach to kinetic motion simulation on a
broad number of 1- and 2-dimensional algorithms. This note
and the accompanying video illustrate our solution to kinetic
3D convex hulls using self-adjusting computation. We kine-
tize the randomized incremental convex-hull algorithm [8].
Starting with a single tetrahedron of four non-planar ran-
domly chosen points, the algorithm constructs the hull by
inserting the rest of the points one by one and updating
the hull after each insertion. To ensure stability, we make
small changes to the representation of the data structures
used in the standard algorithm. We do not give a stability
bound for our algorithm in this paper. To evaluate the ef-
fectiveness of our approach experimentally, we implemented
the static incremental convex-hull algorithm in the Standard
ML language and kinetized it using our library for applying
self-adjusting computation techniques [4].

2. EXPERIMENTS
This section reports preliminary experimental results. The

experiments were run on a 2.0GHz Power Mac G5 with 2 GB
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Figure 1: Time per kinetic event and number of events. Figure 2: The hull for gas molecules.

of memory. We used the MLton compiler for Standard ML.
Since MLton uses garbage collection, the measurements de-
pend on the specifics of its garbage-collection system. We
therefore report the application time, measured as the to-
tal time minus garbage-collection time. Our results rely
on a standard floating-point root solver described in ear-
lier work [4]. The inputs for our experiments were gener-
ated randomly: each point admits the linear-motion model
x(t) = x0 + v · t, where x0 and v are chosen uniformly at
random from [0, 1]3 and [−0.5, 0.5]3, respectively.

Figure 1 shows the average time for a kinetic event (left)
and the total number of events (right). We also show the
least-square-fit curves to the expressions a · log n + b and
a · n + b respectively. Our experiments for integrated dy-
namic and kinetic changes yield similar results. These ex-
periments indicate that the algorithm is responsive (i.e., re-
sponds to kinetic event quickly) and efficient (i.e., processes
linear number of events). The experiments indicate that
the constant-factors involved in the approach are reasonably
small: we observe a linear speedup between kinetic events
and re-computing the hull from scratch (the speedup factor
reaches 1,500 at 10,000 points).

3. THE MOVIE
The movie starts with an example of computing the con-

vex hull of a set of gas molecules inside a glass. Since
molecules can bounce off the walls of the glass and leave
the glass, the algorithm for computing the hull should re-
spond to dynamic changes and kinetic changes (due to mo-
tion). We then describe our kinetization technique based on
self-adjusting computation and show experimental results.
We then illustrate the two properties of the kinetized al-
gorithms, the ability to respond to integrated dynamic and
kinetic changes and composability, with two examples. First
we show a movie of the convex hull being maintained inside
of a box as we randomly insert and delete points. Second, we
show a movie for computing the points furthest away from
each other by composing the convex-hull algorithm with an
algorithm that finds points of a list that are furthest away
from each other. This algorithm requires O(m) time per
kinetic event (m is the number of points on the hull) and
is therefore practical when m is small. The movie ends by
giving a simulation of the convex hull of gas molecules in-
side of a glass (a solution to the motivating example). The
solution is obtained by composing an algorithm for filtering
the points inside a glass with our algorithm for computing
the convex hull.
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