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ABSTRACT
This paper presents the design and analysis of parallel ap-
proximation algorithms for facility-location problems, includ-
ing NC and RNC algorithms for (metric) facility location,
k-center, k-median, and k-means. These problems have re-
ceived considerable attention during the past decades from
the approximation algorithms community, which primarily
concentrates on improving the approximation guarantees. In
this paper, we ask: Is it possible to parallelize some of the
beautiful results from the sequential setting?

Our starting point is a small, but diverse, subset of results
in approximation algorithms for facility-location problems,
with a primary goal of developing techniques for devising
their efficient parallel counterparts. We focus on giving
algorithms with low depth, near work efficiency (compared
to the sequential versions), and low cache complexity.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Algorithms, Theory

Keywords
Parallel algorithms, approximation algorithms, facility loca-
tion problems

1. INTRODUCTION
Facility location is an important and well-studied class of

problems in approximation algorithms, with far-reaching im-
plications in areas as diverse as machine learning, operations
research, and networking: the popular k-means clustering
and many network-design problems are all examples of prob-
lems in this class. Not only are these problems important
because of their practical value, but they appeal to study
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because of their special stature as “testbeds” for techniques
in approximation algorithms. Recent research has focused
primarily on improving the approximation guarantee, pro-
ducing a series of beautiful results, some of which are highly
efficient—often, with the sequential running time within
constant or polylogarithmic factors of the input size.

Despite significant progress on these fronts, work on devel-
oping parallel approximation algorithms for these problems
remains virtually non-existent. Although variants of these
problems have been considered in the the distributed comput-
ing setting [29, 11, 32], to the best our of knowledge, almost
no prior work has looked directly in the parallel setting where
the total work and parallel time (depth) are the parameters
of concern. The only prior work on these problems is due to
Wang and Cheng, who gave a 2-approximation algorithm for
k-center that runs in O(n log2 n) depth and O(n3) work [37],
a result which we improve in this paper.

Deriving parallel algorithms for facility location problems
is a non-trivial task and will be a valuable step in understand-
ing how common techniques in approximation algorithms
can be parallelized efficiently. Previous work on facility loca-
tion commonly relies on techniques such as linear-program
(LP) rounding, local search, primal dual, and greedy. Un-
fortunately, LP rounding relies on solving a class of linear
programs not known to be solvable efficiently in polylogarith-
mic time. Neither do known techniques allow for parallelizing
local-search algorithms. Despite some success in parallelizing
primal-dual and greedy algorithms for set-covering, vertex-
covering, and related problems, these algorithm are obtained
using problem-specific techniques, which are not readily ap-
plicable to other problems.

Summary of Results. In this paper, we design and analyze
several algorithms for (metric) facility location, k-median,
k-means and k-center problems, focusing on parallelizing a
diverse set of techniques in approximation algorithms. We
study the algorithms on the EREW PRAM and the Parallel
Cache Oblivious model [3]. The latter model captures mem-
ory locality. We are primarily concerned with minimizing the
work (or cache complexity) while achieving polylogarithmic
depth in these models. We are less concerned with polylog-
arithmic factors in the depth since such measures are not
robust across models. By work, we mean the total operation
count. All algorithms we develop are in NC or RNC, so they
have polylogarithmic depth.

We first present a parallel RNC algorithm mimicking the
greedy algorithm of Jain et al. [18]. This is the most chal-
lenging algorithm to parallelize because the greedy algorithm
is inherently sequential. We show the algorithm gives a



(6 + ε)-approximation and does O(m log2
1+εm) work, which

is within a logarithmic factor of the serial algorithm. Then,
we present a simple RNC algorithm using the primal-dual
approach of Jain and Vazirani [17] which leads to a (3 + ε)-
approximation and for input of size m runs in O(m log1+εm)
work, which is the same as the sequential work. The se-
quential algorithm is a 3-approximation. Following that, we
present a local-search algorithm for k-median and k-means,
with approximation factors of 5 + ε and 81 + ε, matching
the guarantees of the sequential algorithms. For constant
k, the algorithm does O(n2 logn) work, which is the same
as the sequential counterpart. Furthermore, we present a
2-approximation algorithm for k-center with O((n logn)2)
work, based on the algorithm of Hochbaum and Shmoys [16].
Finally, we show a O(m log2

1+ε(m))-work randomized round-
ing algorithm, which yields a (4 + ε)-approximation, given
an optimal linear-program solution as input. The last two
algorithms run in work within a logarithmic factor of the
serial algorithm counterparts.

Related Work. Facility-location problems have had a long
history. Because of space consideration, we mention only
some of the results here, focusing on those concerning met-
ric instances. For the (uncapacitated) metric facility loca-
tion, the first constant factor approximation was given by
Shmoys et al. [34], using an LP-rounding technique, which
has subsequently been improved [7, 13]. A different approach,
based on local-search techniques, has been used to obtain
a 3-approximation [22, 1, 14]. Combinatorial algorithms
based on primal-dual and greedy approaches with constant
approximation factors are also known [18, 17, 31]. Other ap-
proximation algorithms and hardness results have also been
given by [36, 8, 4, 5, 27, 28, 22, 5, 13]. An open problem
is to close the gap between the best known approximation
factor of 1.5 [4] and the hardness result of 1.463 [13].

The first constant factor approximation for k-median prob-
lem was given by Charikar et al. [6], which was subsequently
improved by [5] and [1] to the current best factor of 3 + ε.
For k-means, constant-factor approximations are known for
this problem [17, 14]; a special case when the metric space
is the Euclidean space has also been studied [20]. For k-
center, tight bounds are known: there is a 2-approximation
algorithm due to [12, 15], and this is tight unless P = NP.

The study of parallel approximation algorithms has been
slow since the early 1990s. There are RNC and NC paral-
lel approximation algorithms for set cover [2, 33], vertex
cover [21, 23], special cases of linear programs (e.g., positive
LPs and cover-packing LPs) [26, 35, 38], and k-center [37].
These algorithms are typically based on parallelizing their
sequential counterparts, which usually contain an inherently
sequential component (e.g., a greedy step which requires pick-
ing and processing the minimum-cost element before proceed-
ing to the next). A common idea in these parallel algorithms
is that instead of picking only the most cost-effective element,
they make room for parallelism by allowing a small slack (e.g.,
a (1 + ε) factor) in what can be selected. This idea often re-
sults in a slightly worse approximation factor than the sequen-
tial version. For instance, the parallel set-cover algorithm of
Rajagopalan and Vazirani is a (2(1 + ε) lnn)-approximation,
compared to a (lnn)-approximation produced by the stan-
dard greedy set cover. Likewise, the parallel vertex-cover
algorithm of Khuller et al. is a 2/(1− ε)-approximation as
opposed to the optimal 2-approximation given by various
known sequential algorithms. Only recently has the approx-

imation factor for vertex cover been improved to 2 in the
parallel case [23].

Several approximation algorithms have been proposed for
distributed computing; see, e.g. [10], for a survey. For facility
location, recent research has proposed a number of algo-
rithms, both for the metric and non-metric cases [29, 11, 32].
The work of Pandit and Pemmaraju [32] is closely related our
primal-dual algorithm; their algorithm is a 7-approximation
in the CONGEST model for distributed computing. Both
their algorithm and ours have a similar preprocessing step
and rely on the (1 + ε)-slack idea although their algorithm
uses a fixed ε = 1. The model and the efficiency metrics
studied are different, however.

2. PRELIMINARIES AND NOTATION
Let F denote a set of facilities and C denote a set of clients.

For convenience, let nc = |C|, nf = |F |, and m = nc × nf .
Each facility i ∈ F has a cost of fi, and each client j ∈ C
incurs a cost (“distance”) d(j, i) to use the facility i. We
assume throughout that there is a metric space (X, d) with
F ∪ C ⊆ X that underlies our problem instances. Thus, the
distance d is symmetric and satisfies the triangle inequality.
As a shorthand, denote the cost of the optimal solution by
opt, the facility set of the optimal solution by F ∗, and the
facility set produced by our algorithm by FA. Furthermore,
we write d(u, S) to mean the minimum distance from u to a
member of S, i.e., d(u, S) = min{d(u,w) : w ∈ S}.

Let G be a graph. We denote by degG(v) the degree of
the node v in G and use ΓG(v) to denote the neighbor set of
the node v. We drop the subscript (i.e., writing deg(v) and
Γ(v)) when the context is clear. Let V (G) and E(G) denote
respectively the set of nodes and the set of edges.

Parallel Models. All the parallel algorithms in this paper
can be expressed in terms of a set of simple operations on
vectors and dense matrices, making it easy to analyze costs
on a variety of parallel models. In particular, the distances
d(·, ·) can be represented as a dense n × n matrix, where
n = nc + nf , and any data at clients or facilities can be
represented as vectors. The only operations we need are
parallel loops over the elements of the vector or matrix,
transposing the matrix, sorting the rows of a matrix, and
summation, prefix sums and distribution across the rows or
columns of a matrix or vector. A prefix sum returns to each
element of a sequence the sum of previous elements. The
summation or prefix sum needs to be applied using a variety
of associative operators, including min, max, and addition.

We refer to all the operations other than sorting as the
basic matrix operation. The basic matrix operations on
m elements can all be implemented with O(m) work and
O(logm) time on the EREW PRAM [19], and with O(m/B)
cache complexity and O(logm) depth in the parallel cache
oblivious model. For the parallel cache oblivious model,
we assume a tall cache M > B2, where M is the size of
the cache and B is the block size. Sorting m elements takes
O(m logm) work and O(logm) time on an EREW PRAM [9],
and O(m

B
logM/Bm) cache complexity and O(log2 m) depth

on the parallel cache oblivious model [3]. All algorithms
described in this paper are cache efficient in the sense that
the cache complexity in the cache oblivious model is bounded
by O(w/B) where w is the work in the EREW model. All
algorithms use a polylogarithmic number of calls to the basic
matrix operations and sorting and are thus in RNC—do



polynomial work with polylogarithmic depth and possibly
use randomization.

Given this set up, the problems considered in this paper
can be defined as follows:

Facility Location. The goal of this problem is to find a set
of facilities FS ⊆ F that minimizes the objective function

FacLoc(FS) =
X
i∈FS

fi +
X
j∈C

d(j, FS) (1)

Note that we do not need an explicit client-to-facility assign-
ment because given a set of facilities FS , the cost is minimized
by assigning each client to the closest open facility.

Non-trivial upper- and lower-bounds for the cost of the
optimal solution are useful objects in approximation algo-
rithms. For each client j ∈ C, let γj = mini∈F (fi + d(j, i))
and γ = maxj∈C γj . The following bounds can be easily
established:

γ ≤ opt ≤
X
j∈C

γj ≤ γnc. (2)

Furthermore, metric facility location has a natural integer-
program formulation for which the relaxation yields the pair
of primal and dual programs shown in Figure 1.

k-Median and k-Means. Unlike facility location, the k-
median objective does not take into consideration facility
costs, instead limiting the number of opened centers (facil-
ities) to k. Moreover, in these problems, we typically do
not distinguish between facilities and clients; every node
is a client, and every node can be a facility. Formally,
let V ⊆ X be the set of nodes, and the goal is to find
a set of at most k centers FS ⊆ V that minimizes the
objective kMed(FS) =

P
j∈V d(j, FS). Almost identical

to k-median is the k-means problem with the objective
kMeans(FS) =

P
j∈C d

2(j, FS).

k-Center. Another type of facility-location problem which
has a hard limit on the number of facilities to open is k-
center. The k-center problem is to find a set of at most k cen-
ters FS ⊆ V that minimizes the objective kCenter(FS) =
maxj∈V d(j, FS). In these problems, we will use n to denote
the size of V .

3. DOMINATOR SET
We introduce and study two variants of the maximal in-

dependent set (MIS) problem, which will prove to be useful
in nearly all algorithms described in this work. The first
variant, called the dominator set problem, concerns finding a
maximal set I ⊆ V of nodes from a simple graph G = (V,E)
such that none of these nodes share a common neighbor
(neighboring nodes of G cannot both be selected). The sec-
ond variant, called the U-dominator set problem, involves
finding a maximal set I ⊆ U of the U -side nodes of a bipar-
tite graph H = (U, V,E) such that none of the nodes have a
common V -side neighbor. We denote by MaxDom(G) and
MaxUDom(H) the solutions to these problems, resp.

Both variants can be equivalently formulated in terms
of maximal independent set. The first variant amounts to
finding a maximal independent set on

G2 = (V, {uw : uw ∈ E or ∃z s.t. uz, zw ∈ E}),

and the second variant a maximal independent set on

H ′ = (U, {uw : ∃z ∈ V s.t. uz, zw ∈ E}).

Because of this relationship, on the surface, it may seem
that one could simply compute G2 or H ′ and run an existing
MIS algorithm. Unfortunately, computing graphs such as G2

and H ′ appears to need O(nω) work, where ω is the matrix-
multiply constant, whereas the näıve greedy-like sequential
algorithms for the same problems run in O(|E|) = O(n2).
This difference makes it unlikely to obtain work efficient
algorithms via this route.

In this section, we develop near work-efficient algorithms
for these problems, bypassing the construction of the inter-
mediate graphs. The key idea is to compute a maximal
independent set in-place. Numerous parallel algorithms are
known for maximal independent set, but the most relevant
to us is an algorithm of Luby [25], which we now sketch.

The input to the algorithm is a graph G = (V,E). Luby’s
algorithm constructs a maximal independent set I ⊆ V by
proceeding in multiple rounds, with each round performing
the following computation:

Algorithm 3.1 The select step of Luby’s algorithm for
maximal independent set.

1. For each i ∈ V , in parallel, π(i) = a number chosen
u.a.r. from {1, 2, . . . , 2n4}.

2. Include a node i in the maximal independent set I
if π(i) < min{π(j) : j ∈ Γ(i)}, where Γ(i) is the
neighborhood of i in G.

This process is termed the select step in Luby’s work.
Following the select step, the newly selected nodes, together
with their neighbors, are removed from the graph before
moving on to the next round.

Implementing the select step: We describe how the
select step can be performed in-place for the first variant; the
technique applies to the other variant. We will be simulating
running Luby’s algorithm on G2, without generating G2.
Since G2 has the same node set as G, step 1 of Algorithm 3.1
remains unchanged. Thus, the crucial computation for the
select step is to determine efficiently, for each node i, whether
π(i) holds the smallest number among its neighbors in G2, i.e.,
computing efficiently the test in step 2. To accomplish this,
we simply pass the π(i) to their neighbors taking a minimum,
and then to the neighbors again taking a minimum. These
can be implemented with a constant number of basic matrix
operations, in particular distribution and summation using
minimum over the rows and columns of the |V |2 matrix.

Lemma 3.1 Given a graph G = (V,E), a maximal domina-
tor set I ⊆ V can be found in expected O(log2 |V |) depth and
O(|V |2 log |V |) work. Furthermore, given a bipartite graph
G = (U, V,E), a maximal U-dominator set I ⊆ U can be
found in expected O((log |U |) · max{log |U |, log |V |}) depth
and O(|V ||U |max{log |U |, log |V |}) work.

For sparse matrices, which we do not use in this paper, this
can easily be improved to O(|E| log |V |) work.

4. FACILITY LOCATION: GREEDY
The greedy scheme underlies an exceptionally simple al-

gorithm for facility location, due to Jain et al. [18]. Despite
the simplicity, the algorithm offers one of the best known



Minimize
P
i∈F,j∈C d(j, i)xij +

P
i∈F fiyi

Subj. to:

8<:
P
i∈F xij ≥ 1 for j ∈ C

yi − xij ≥ 0 for i ∈ F, j ∈ C
xij ≥ 0, yi ≥ 0

Maximize
P
j∈C αj

Subj. to:

8<:
P
j∈C βij ≤ fi for i ∈ F

αj − βij ≤ d(j, i) for i ∈ F, j ∈ C
βij ≥ 0, αj ≥ 0

Figure 1: The primal (left) and dual (right) programs for metric (uncapacitated) facility location.

approximation guarantees for the problem. To describe the
algorithm, we will need some definitions.

Definition 4.1 (Star, Price, and Maximal Star) A star
S = (i, C′) consists of a facility i and a subset C′ ⊆ C. The
price of S is price(S) = (fi +

P
j∈C′ d(j, i))/|C′|. A star S is

said to be maximal if all strict super sets of C′ have a larger
price, i.e., for all C′′ ) C′, price((i, C′′)) > price((i, C′)).

The greedy algorithm of Jain et al. proceeds as follows:

Until no client remains, pick the cheapest star
(i, C′), open the facility i, set fi = 0, remove all
clients in C′ from the instance, and repeat.

This algorithm has a sequential running time of O(m logm),
and using techniques known as factor-revealing LP, Jain et
al. show that the algorithm has an approximation factor of
1.861 [18]. From a parallelization point of view, the algorithm
is highly sequential—at each step, only the minimum-cost
option is chosen, and every subsequent step depends on the
preceding one. In this section, we describe how to over-
come this sequential nature and obtain an RNC algorithm
inspired by the greedy algorithm of Jain et al. We show
that the parallel algorithm is a (6 + ε)-approximation using
elementary techniques. It remains an open problem whether
factor-revealing LP techniques can be used to show a better
approximation bound for the parallel algorithm.

The key idea to parallelization is that much faster progress
will be made if we allow a small slack in what can be selected
in each round; however, a subselection step is necessary
to ensure that facility and connection costs are properly
accounted for.

We present the parallel algorithm in Algorithm 4.1 and
now describe step 1 in greater detail; steps 2 – 3 can be
implemented using standard techniques [19, 24]. As ob-
served in Jain et al. [18], for each facility i, the lowest-
priced star centered at i consists of the κi closest clients to
i, for some κi. Following this observation, we can presort
the distance between facilities and clients for each facility.
Let i be a facility and assume without loss of generality
that d(i, 1) ≤ d(i, 2) ≤ · · · ≤ d(i, nc). Then, the cheap-
est maximal star for this facility can be found as follows.
Use a prefix-sum computation to compute the sequence
p(i) = {(fi +

P
j≤k d(i, k))/k}nc

k=1. Then, find the small-

est index k such that p
(i)
k < p

(i)
k+1 or use k = nc if no such

index exists. It is easy to see that the maximal lowest-priced
star centered at i is the facility i together with the client set
{1, . . . , k}.

Crucial to this algorithm is a subselection step, which
ensures that every facility and the clients that connect to
it are adequately accounted for in the dual-fitting analysis.
This subselection process can be seen as scaling back on the
aggressiveness of opening up the facilities, mimicking the
greedy algorithm’s behavior more closely.

4.1 Analysis
We present a dual-fitting analysis of the above algorithm.

The analysis relies on the client-to-facility assignment π,
defined in the description of the algorithm. The following
easy-to-check facts will be useful in the analysis.

Fact 4.2 For each iteration of the execution, the following
holds: (1) If Si is the cheapest maximal star centered at i,
then j appears in Si if and only if d(j, i) ≤ price(Si). (2) If
t = price(Si), then

P
j∈C max(0, t− d(j, i)) = fi.

Now consider the dual program in Figure 1. For each
client j, set αj to be the τ setting in the iteration that
the client was removed. For convenience, assume without
loss of generality that α1 ≤ α2 ≤ · · · ≤ αnc , and define
Wi = {j ∈ C : αj ≥ (3 + ε)d(j, i)} for all i ∈ F . We begin
the analysis by relating the cost of the solution that the
algorithm outputs to the cost of the dual program.

Lemma 4.3 The cost of the algorithm’s solution
P
i∈FA

fi+P
j∈C d(j, FA) is upper-bounded by 2(1 + ε)2P

j∈C αj.

Proof. Consider that in step 4(c), a facility i is opened if
at least a 1

2(1+ε)
fraction of the neighbors “chose” i. Further-

more, we know from the definition of H that, in that round,
fi +

P
j∈ΓH (i) d(j, i) ≤ τ(1 + ε) deg(i). By noting that we

can partition C by which facility the client is assigned to in
the assignment π, we establishX

j∈C

αj · 2(1 + ε)2 ≥
X
i∈FA

“
fi +

X
j:πj=i

d(j, i)
”

≥
X
i∈FA

fi +
X
j∈C

d(j, FA),

as desired.

In the series of claims that follows, we show that when
scaled down by a factor of 3 + ε, the α setting determined
above is a dual feasible solution.

Claim 4.4 Let i ∈ F . Assuming Wi is non-empty, if j′

is the lowest-numbered client that connects to i (i.e., j′ =
min{j : πj = i}, so it is ∞ if i is never opened), and
j0 = min

`
j′, arg min

j∈Wi

αj
´
, then

X
j∈Wi

max(0, αj0 − d(j, i)) ≤ fi.

Proof. Let R be the set of clients which remain at the
beginning of the iteration that τ was set to αj0 . First, note
that if j0 < j′, then i must be opened after this iteration.
As a consequence of Fact 4.2, we have

P
j∈Wi

max(0, αj0 −
d(j, i)) ≤

P
j∈R max(0, (1 + ε)αj0 − d(j, i)) < fi. Therefore,



Algorithm 4.1 Parallel greedy algorithm for metric facility location.

In rounds, the algorithm performs the following steps until no client remains:

1. For each facility i, in parallel, compute Si = (i, C(i)), the lowest-priced maximal star centered at i.

2. Let τ = mini∈F price(Si), and let I = {i ∈ F : price(Si) ≤ τ(1 + ε)}.
3. Construct a bipartite graph H = (I, C′, {ij : d(i, j) ≤ τ(1 + ε)}), where C′ = {j ∈ C : ∃i ∈ I s.t. d(i, j) ≤ τ(1 + ε)}.
4. Facility Subselection: while (I 6= ∅):

(a) Let Π : I → {1, . . . , |I|} be a random permutation of I.

(b) For each j ∈ C′, let ϕj = arg mini∈ΓH (j) Π(i).

(c) For each i ∈ I, if |{j : ϕj = i}| ≥ 1
2(1+ε)

deg(i), add i to FA (open i), set fi = 0, remove i from I , and remove ΓH(i)

from both C and C′.

Note: In the analysis, the clients removed in this step have πj set as follows. If the facility ϕj is opened, let πj = ϕj ;
otherwise, πj is set to any facility i we open in this step such that ij ∈ E(H). Note that any facility that is opened is
at least 1/(2(1 + ε)) paid for by the clients that select it, and that since every client is assigned to at most one facility,
they only pay for one edge.

(d) Remove i ∈ I (and the incident edges) from the graph H if on the remaining graph,
fi+

P
j∈ΓH (i) d(j,i)

deg(i)
> τ(1 + ε).

These facilities will show up in the next round (outer-loop).

Note: After fi is set to 0, facility i will still show up in the next round.

in the rest of the proof, we will assume that j0 = j′ and that
i was actually opened.

Now suppose for a contradiction that
P
j∈Wi

max(0, αj0 −
d(j, i)) > fi, so then because j0 = j′, we know that R is in
fact the set of clients that remain at the beginning of the
iteration in which i was first opened (i.e., i was a center of
some star and fi > 0 at that point). Furthermore, we know
that if the cost the star centered at i in this iteration is ti,
then fi =

P
j∈R max(0, ti−d(j, i)). Therefore, since Wi ⊆ R

and ti ≥ αj0 , we have fi =
P
j∈R max(0, ti − d(j, i)) ≥P

j∈R max(0, αj0 − d(j, i)) ≥
P
j∈Wi

max(0, αj0 − d(j, i)) >
fi, which gives a contradiction.

Claim 4.5 Let i ∈ F , and j, j′ be clients such that j′ ≤ j.
Then, αj ≤ αj′ + d(i, j′) + d(i, j).

The proof of this claim closely parallels that of Jain et al. [18]
and is omitted due to space considerations. Combining
Claims 4.5 and 4.4, we have the following lemma:

Lemma 4.6 Let i ∈ F . Then,

X
j∈Wi

ˆ
αj − (3 + ε)d(j, i)

˜
≤ (3 + ε)fi.

Proof. We first note that if Wi is empty, the lemma
is trivially true. Thus, we assume Wi is non-empty and
define j0 as follows: let j′ be the lowest-numbered client
that connects to i or ∞ if i is never opened. Then, j0 =
min(j′, arg minj∈Wi αj). Now if j0 = j′, then d(j0, i) ≤
(1 + ε)αj0 . Otherwise, we have j0 ∈ Wi, in which case
d(j0, i) ≤ αj by the definition of Wi. Therefore, in either
case, d(j0, i) ≤ (1 + ε)αj0 .

Next we let T = {j ∈ Wi : αj0 ≥ d(j, i)}. Applying

Claims 4.5 and 4.4, we haveX
j∈Wi

(αj − d(j, i))

≤
X
j∈Wi

(αj0 + d(j0, i)) ≤
X
j∈Wi

(2 + ε)αj0

≤ (2 + ε)fi +
X
j∈T

(2 + ε)d(j, i) +
X

j∈Wi\T

(2 + ε)d(j, i)

≤ (2 + ε)fi +
X
j∈Wi

(2 + ε)d(j, i),

which completes the proof.

Using this lemma, we argue that the setting α′j = αj/(3 + ε)
and β′ij = max(0, α′j − d(j, i)) yields a dual feasible solu-
tion. First, our choice of β′ij ’s ensures that all constraints
of the form αj − βij ≤ d(j, i) are satisfied. Then, by the
lemma above, we have

P
j∈C max(0, αj − (3 + ε)d(j, i)) =P

j∈Wi
[αj − (3 + ε)d(j, i)] ≤ (3 + ε)fi, which implies thatP

j∈C max(0, αj − (3 + ε)d(j, i)) ≤ (3 + ε)fi. Hence, we

conclude that for all facility i ∈ F ,
P
j∈C β

′
ij ≤ fi, proving

the following corollary:

Corollary 4.7 The setting α′j =
αj

3+ε
and β′ij = max(0, α′j−

d(j, i)) is a dual feasible solution.

Running time analysis.
Consider the algorithm’s description in Algorithm 4.1. The

rows can be presorted to give each client its distances from
facilities in order. In the original order, each element can be
marked with its rank. Step 1 then involves a prefix sum on
the sorted order to determine how far down the order to go
and then selection of all facilities at or below that rank. Steps
2–3 require reductions and distributions across the rows or
columns of the matrix. The subset I ⊂ F can be represented
as a bit mask over F . Step 4 is more interesting to analyze;
the following lemma bounds the number of rounds facility



subselection is executed, the proof of which is analogous to
Lemma 4.1.2 of Rajagopalan and Vazirani [33]; we present
here for completeness a simplified version of their proof,
which suffices for our lemma.

Lemma 4.8 With probability 1− o(1), the subselection step
terminates within O(log1+εm) rounds.

Proof. Let Φ = |E|. We will show that if Φ′ is the
potential value after an iteration of the subselection step,
then E[Φ− Φ′] ≥ cΦ, for some constant c > 0. The lemma
then follows from standard results in probability theory. To
proceed, define choseni = |{j ∈ C′ : ϕj = i}|. Furthermore,
we say that an edge ij is good if at most θ = 1

2
(1 − 1

1+ε
)

fraction of neighbors of i have degree higher than j.
Consider a good edge ij. We will estimate E[choseni|ϕj = i].

Since ij is good, we know thatX
j′∈ΓH (i)

1{deg(j′)≤deg(j)} ≥ (1− θ) deg(i).

Therefore, E[choseni|ϕj = i] ≥ 1
2
(1− θ) deg(i), as it can be

shown that Pr[ϕj′ = i|ϕj = i] ≥ 1
2

for all j′ ∈ ΓH(i) and
deg(j′) ≤ deg(j). By Markov’s inequality and realizing that
choseni ≤ deg(i), we have

Pr

»
choseni ≥

1

2(1 + ε)
deg(i)

˛̨̨
ϕj = i

–
= p0 > 0.

Finally, we note that E[Φ− Φ′] is at leastX
ij∈E

Pr

»
ϕj = i and choseni ≥

1

2(1 + ε)
deg(i)

–
· deg(j)

≥
X

good ij∈E

1

deg(j)
p0 deg(j)

≥ p0

X
ij∈E

1{ij is good}.

Since at least θ fraction of the edges are good, E[Φ− Φ′] ≥
p0θΦ. Since ln(1/(1 − p0θ)) = Ω(log(1 + ε)), the lemma
follows from standard results in probability [30].

It is easy to see that each subselection step can be per-
formed with a constant number of basic matrix operations
over the D matrix. Therefore, if the number of rounds the
main body is executed is r, the algorithm makesO(r log1+εm)
calls to the basic matrix operations described in Section 2
with probability exceeding 1− o(1). It also requires a single
sort in the preprocessing. This means O(r log1+εm logm)
time implies a total of O(rm log1+εm) work (with probabil-
ity exceeding 1− o(1)) on the EREW PRAM. Furthermore,
it is cache efficient (cache complexity is O(w/B)) since the
sort is only applied once and does not dominate the cache
bounds.

Bounding the number of rounds.
Before describing a less restrictive alternative, we point

out that the simplest way to bound the number of rounds by
a polylogarithm factor is to rely on the common assumption
that the facility cost, as well as the ratio between the mini-
mum (non-zero) and the maximum client-facility distance,
is polynomially bounded in the input size. As a result of
this assumption, the number of rounds is upper-bounded by
log1+ε(m

c) = O(log1+εm), for some c ≥ 1.

Alternatively, we can apply a preprocessing step to ensure
that the number of rounds is polylogarithm in m. The basic
idea of the preprocessing step is that if a star is “relatively
cheap,” opening it right away will harm the approximation
factor only slightly. Using the bounds in Equation (2), if Si
is the lowest-priced maximal star centered at i, we know we
can afford to open i and discard all clients attached to it if
price(Si) ≤ γ

m2 . Therefore, the preprocessing step involves:
(1) computing Si, the lowest-priced maximal star centered
at i, for all i ∈ F , (2) opening all i such that price(Si) ≤ γ

m2 ,
(3) setting fi of these facilities to 0 and removing all clients
attached to these facilities.

Computing γ takes O(lognc + lognf ) depth and O(m)
work. The rest of the preprocessing step is at most as costly
as a step in the main body. Thus, the whole preprocess-
ing step can be accomplished in O(logm) depth and O(m)
work. With this preprocessing step, three things are clear:
First, τ in the first iteration of the main algorithm will
be at least γ

m2 , because cheaper stars have already been
processed in preprocessing. Second, the cost of our final
solution is increased by at most nc × γ

m2 ≤ γ
m
≤ opt/m,

because the facilities and clients handled in preprocessing
can be accounted for by the cost of their corresponding
stars—specifically, there can be most nc stars handled in
preprocessing, each of which has price ≤ γ/m2; and the price
for a star includes both the facility cost and the connection
cost of the relevant clients and facilities. Finally, in the
final iteration, τ ≤ ncγ. As a direct consequence of these
observations, the number of rounds is upper-bounded by
log1+ε(

ncγ
γ/m2 ) ≤ log1+ε(m

3) = O(log1+εm), culminating in

the following theorem:

Theorem 4.9 Let 0 < ε ≤ 1 be fixed. For sufficiently
large input, there is a greedy-style RNC O(m log2

1+ε(m))-
work algorithm that yields a factor-(6 + ε) approximation for
the metric facility-location problem.

5. FACILITY LOCATION: PRIMAL-DUAL
The primal-dual scheme is a versatile paradigm for combi-

natorial algorithms design. In the context of facility location,
this scheme underlies the Lagrangian-multiplier preserving1

(LMP) 3-approximation algorithm of Jain and Vazirani, en-
abling them to use the algorithm as a subroutine in their
6-approximation algorithm for k-median [17].

The algorithm of Jain and Vazirani consists of two phases, a
primal-dual phase and a postprocessing phase. To summarize
this algorithm, consider the primal and dual programs in
Figure 1. In the primal-dual phase, starting with all dual
variables set to 0, we raise the dual variables αj ’s uniformly
until a constraint of the form αj−βij ≤ d(j, i) becomes tight,
at which point βij will also be raised, again, uniformly to
prevent these constraints from becoming overtight. When a
constraint

P
j βij ≤ fi is tight, facility i is tentatively opened

and clients with αj ≥ d(j, i) are “frozen,” i.e., we stop raising
their αj values from this point on. The first phase ends
when all clients are frozen. In the postprocessing phase, we
compute and output a maximal independent set on a graph
G of tentatively open facilities; in this graph, there is an
edge between a pair of facilities i and i′ if there is a client j
such that αj > d(j, i) and αj > d(j, i′). Thus, the maximal

1This means α
P
i∈FA

fi +
P
j∈C d(j, FA) ≤ α · opt, where α

is the approximation ratio.



independent set ensures proper accounting of the facility cost
(i.e., each client “contributes” to at most one open facility,
and every open facility has enough contribution). Informally,
we say that a client j “pays” for or “contributes” to a facility
i if βij = αj − d(j, i) > 0.

Remarks. We note that in the parallel setting, the description
of the postprocessing step above does not directly lead to an
efficient algorithm, because constructing G in polylogarithmic
depth seems to need O(mnf ) work, which is much more than
one needs sequentially.

In this section, we show how to obtain a work-efficient RNC
(3+ε)-approximation algorithm for facility location, based on
the primal-dual algorithm of Jain and Vazirani. Critical to
bounding the number of iterations in the main algorithm by
O(logm) is a preprocessing step, which is similar to that used
by Pandit and Pemmaraju in their distributed algorithm [32].

Preprocessing: Assuming γ as defined in Equation (2), we
will open every facility i that satisfiesX

j∈C

max
“

0,
γ

m2
− d(j, i)

”
≥ fi.

Furthermore, for all clients j such that there exists an opened
i and d(j, i) ≤ γ/m2, we declare them connected and set
αj = 0. The facilities opened in this step will be called free
facilities and denoted by the set F0.

Main Algorithm: The main body of the algorithm is de-
scribed in Algorithm 5.1. The algorithm outputs a bipar-
tite graph H = (FT , C,E), constructed as the algorithm
executes. Here FT is the set of facilities declared open dur-
ing the iterations of the main algorithm and E is given by
E = {ij : i ∈ F, j ∈ C, and (1 + ε)αj > d(j, i)}.
Post-processing. As a post-processing step, we compute
I = MaxUDom(H). Thus, the set of facilities I ⊆ FT has
the property that each client contributes to the cost of at
most one facility in I. Finally, we report FA = I ∪ F0 as the
set of facilities in the final solution.

5.1 Analysis
To analyze approximation guarantee of this algorithm, we

start by establishing that the αj setting produced by the
algorithm leads to a dual feasible solution.

Claim 5.1 For any facility i,X
j∈ΓH (i)

max(0, αj − d(j, i)) ≤ fi.

The proof of this claim is omitted in the interest of space. It
follows from this claim that setting βij = max(0, αj − d(j, i))
provides a dual feasible solution. Next we relate the cost
of our solution to the cost of the dual solution. To ease
the following analyses, we use a client-to-facility assignment
π : C → F , defined as follows: For all j ∈ C, let ϕ(j) = {i :
(1 + ε)αj ≥ d(j, i)}. Now for each client j, (1) if there exists
i ∈ F0 such that d(j, i) ≤ γ/m2, set πj to any such i; (2) if
there exists i ∈ I such that ij is an edge in H, then πj = i (i
is unique because of properties of I) ; (3) if there exists i ∈ I
such that i ∈ ϕ(j), then πj = i; (4) otherwise, pick i′ ∈ ϕ(j)
and set πj to i ∈ I which is a neighbor of a neighbor of i′.

Clients of the first case, denoted by C0, are called freely
connected ; clients of the cases (2) and (3), denoted by C1,

are called directly connected. Otherwise, a client is indirectly
connected.

The following lemmas bound the facility costs and the
connection costs of indirectly connected clients.

Lemma 5.2X
i∈FA

fi ≤
γ

m
+
X
j∈C1

(1 + ε)αj −
X

j∈C0∪C1

d(j, πj)

Proof. When facility i ∈ FT was opened, it must satisfy
fi ≤

P
j:ij∈E(G)(1 + ε)αj − d(j, i). If client j has contributed

to i (i.e., (1 + ε)αj − d(j, i) > 0) and i ∈ I, then j is directly
connected to it. Furthermore, for each client j, there is
at most one facility in I that it contributes to (because
I = MaxUDom(H)). Therefore,

P
i∈I fi ≤

P
j∈C1

(1 +

ε)αj − d(j, πj). Furthermore, for each “free” facility, we know
that fi ≤

P
j∈C max(0, γ2/m2 − d(j, i)), so by our choice

of π, fi ≤ γ
m2 × nc −

P
j∈C0:πj=i d(j, i). Thus,

P
i∈F0

fi ≤
γ/m−

P
j∈C0

d(j, i). Combining these results and observing
that FA is the disjoint union of I and F0, we have the
lemma.

Lemma 5.3 For each indirectly connected client j (i.e., j 6∈
C0 ∪ C1), we have d(j, πj) ≤ 3(1 + ε)αj.

Proof. Because j 6∈ C0 ∪ C1 and I = MaxUDom(H),
there must exist a facility i′ ∈ ϕ(j) and a client j′ such that
j′ contributed to both i and i′, and (1 + ε)αj ≥ d(j, i′). We
claim that both d(j′, i′) and d(j′, i) are upper-bounded by
(1 + ε)αj . To see this, we note that because j′ contributed to
both i and i′, d(j′, i′) ≤ (1 + ε)αj′ and d(j′, i) ≤ (1 + ε)αj′ .
Let ` be the iteration in which j was declared frozen, so
αj = t`. Since i′ ∈ ϕ(j), i′ must be declared open in
iteration ≤ `. Furthermore, because (1+ε)αj′ > d(j′, i′), αj′
must be frozen in or prior to iteration `. Consequently, we
have αj′ ≤ t` = αj . Combining these facts and applying the
triangle inequality, we get d(j, i) ≤ d(j, i′)+d(i′, j′)+d(j′, i) ≤
(1 + ε)αj + 2(1 + ε)αj′ ≤ 3(1 + ε)αj .

By Lemmas 5.2 and 5.3, we establish

3
X
i∈FA

fi +
X
j∈C

d(j, πj) ≤
3γ

m
+ 3(1 + ε)

X
j∈C

αj . (3)

Now since {αj , βij} is dual feasible, its value can be at most
that of the primal optimal solution; that is,

P
j αj ≤ opt.

Therefore, combining with Equation (3), we know that the
cost of the solution returned by parallel primal-dual algorithm
in this section is at most 3

P
i∈FA

fi +
P
j∈C d(j, C) ≤ (3 +

ε′)opt for some ε′ > 0 when the problem instance is large
enough.

Running Time Analysis.
We analyze the running of the algorithm presented, starting

with the main body of the algorithm. Since
P
j αj ≤ opt and

opt ≤ ncγ, no αj can be bigger than ncγ ≤ mγ. Hence, the
main algorithm must terminate before ` > 3 log1+εm, which
upper-bounds the number of iterations to O(log1+εm). In
each iteration, steps 1, 3, and 4 perform trivial work. Step 2
can be broken down into (1) computing the max for all i ∈
F, j ∈ C

”
and (2) computing the sum for each i ∈ F . These

can all be implemented with the basic matrix operations,
giving a totalof O(log1+εm) of basic matrix operations over
a matrix of size m.



Algorithm 5.1 Parallel primal-dual algorithm for metric facility location

For iteration ` = 0, 1, . . . , the algorithm performs the following steps until all facilities are opened or all clients are frozen,
whichever happens first.

1. For each unfrozen client j, in parallel, set αj to γ
m2 (1 + ε)`.

2. For each unopened facility i, in parallel, declare it open ifX
j∈C

max(0, (1 + ε)αj − d(j, i)) ≥ fi.

3. For each unfrozen client j, in parallel, freeze this client if there exists an opened facility i such that (1 + ε)αj ≥ d(j, i).

4. Update the graph H by adding edges between pairs of nodes ij such that (1 + ε)αj > d(j, i).

After the last iteration, if all facilities are opened but some clients are not yet frozen, we determine in parallel the αj settings
of these clients that will make them reach an open facility (i.e., αj = mini d(j, i)). Finally, update the graph H as necessary.

The preprocessing step, again, involves some reductions
over the rows and columns of the matrix. This includes the
calculations of γj ’s and the composite γ. The post-processing
step relies on computing the U -dominating set, as described
in Section 2 which runs in O(logm) matrix operations.

The whole algorithm therefore runs in O(log1+εm) basic
matrix operations and is hence work efficient compared to
the O(m logm) sequential algorithm of Jain and Vazirani.
Putting these altogether, we have the following theorem:

Theorem 5.4 Let ε > 0 be fixed. For sufficiently large m,
there is a primal-dual RNC O(m log1+εm)-work algorithm
that yields a factor-(3 + ε) approximation for the metric
facility-location problem.

6. OTHER RESULTS
In this section, we consider other applications of dominator

set in facility-location problems.

6.1 k-Center
Hochbaum and Shmoys [16] show a simple factor-2 ap-

proximation for k-center. The algorithm performs a binary
search on the range of distances. We show how to com-
bine the dominator-set algorithm from Section 3 with stan-
dard techniques to parallelize the algorithm of Hochbaum
and Shmoys, resulting in an RNC algorithm with the same
approximation guarantee. Consider the set of distances
D = {d(i, j) : i ∈ C and j ∈ V } and order them so that
d1 < d2 < · · · < dp and {d1, . . . , dp} = D, where p = |D|.
The sequence {di}pi=1 can be computed in O(log |V |) depth
and O(|V |2 log |V |) work. Let Hα be a graph defined as
follows: the nodes of Hα is the set of nodes V , but there is
an edge connecting i and j if and only if d(i, j) ≤ α.

The main idea of the algorithm is simple: find the small-
est index t ∈ {1, 2, . . . , p} such that MaxDom(Hdt) ≤ k.
Hochbaum and Shmoys observe that the value t can be found
using binary search in O(log p) = O(log |V |) probes. We par-
allelize the probe step, consisting of constructing Hdt′ for a
given t′ ∈ {1, . . . , p} and checking whether |MaxDom(Hdt′ )|
is bigger than k. Constructing Hdt′ takes O(1) depth and

O(|V |2) work, and using the maximal-dominator-set algo-
rithm from Section 3, the test can be performed in expected
O(log2 |V |) depth and expected O(|V |2 log |V |) work. The
approximation factor is identical to the original algorithm,
hence proving the following theorem:

Theorem 6.1 There is an RNC 2-approximation algorithm
with O((|V | log |V |)2) work for k-center.

6.2 Facility Location: LP Rounding
LP rounding was among the very first techniques that

yield non-trivial approximation guarantees for metric facility
location. The first constant-approximation algorithm was
given by Shmoys et al. [34]. Although we do not know how
to solve the linear program for facility location in polylog-
arithmic depth, we demonstrate another application of the
dominator-set algorithm and the slack idea by parallelizing
the randomized-rounding step of Shmoys et al. The algo-
rithm yields a (4 + ε)-approximation, and the randomized
rounding is an RNC algorithm.

The randomized rounding algorithm of Shmoys et al. con-
sists of two phases: a filtering phase and a rounding phase.
In the following, we show how to parallelize these phases and
prove that the parallel version has a similar guarantee. Our
presentation differs slightly from the original work but works
in the same spirit.

Filtering: The filtering phase is naturally parallelizable.
Fix α to be a value between 0 and 1. Given an optimal
primal solution (x, y), the goal of this step is to produce a
new solution (x′, y′) with properties as detailed in Lemma 6.2.
Let δj =

P
i∈F d(i, j) ·xij , Bj = {i ∈ F : d(i, j) ≤ (1 +α)δj},

and mass(Bj) =
P
i∈Bj

xij . We compute x′ij and y′i as

follows: (1) let x′ij = xij/mass(Bj) if i ∈ Bj or 0 otherwise,
and (2) let y′i = min(1, (1 + 1/α)yi).

Lemma 6.2 Given an optimal primal solution (x, y), there
is a primal feasible solution (x′, y′) such that (1)

P
i x
′
ij = 1,

(2) if x′ij > 0, then d(j, i) ≤ (1 + α)δj, and (3)
P
i fiyi ≤

(1 + 1
α

)
P
i fiy

′
i.

Proof. By construction, (1) clearly holds. Furthermore,
we know that if x′ij > 0, it must be the case that i ∈ Bj ,
so d(j, i) ≤ (1 + α)δj , proving (2). By definition of y′i,P
i fiyi ≤ (1 + 1

α
)
P
i fiy

′
i, proving (3). Finally, since in an

optimal LP solution,
P
i xij = 1, we know that mass(Bj) ≥

α
1+α

, by an averaging argument. Therefore, x′ij ≤ (1 +
1
α

)xij ≤ min(1, (1 + 1
α

)yi) = y′i, showing that (x′, y′) is
primal feasible.

Rounding: The rounding phase is more challenging to paral-
lelize because it is inherently sequential—a greedy algorithm
which considers the clients in an increasing order of δj and



appears to need Ω(nc) steps. We show, however, that we
can achieve parallelism by eagerly processing the clients
S = {j : δj ≤ (1 + ε)τ}. This is followed by a clean-up
step, which uses the dominator-set algorithm to rectify the
excess facilities. We precompute the following information:
(1) for each j, let ij be the least costly facility in Bj , and (2)
construct H = (C,F, ij ∈ E iff. i ∈ Bj).

There is a preprocessing step to ensure that the number
of rounds is polylogarithmic in m. Let θ be the value of
the optimal LP solution. By an argument similar to that
of Section 4, we can afford to process all clients with δj ≤
θ/m2 in the first round, increasing the final cost by at most
θ/m ≤ opt/m. The algorithm then proceeds in rounds, each
performing the following steps:

1. Let τ = minj δj .

2. Let S = {j : δj ≤ (1 + ε)τ} and

3. Let J = MaxUDom(H), add I = {ij : j ∈ J} to FA;
finally, remove all of S and ∪j∈SBj from V (H).

Since J is U -dominator of H, we know that for all distinct
j, j′ ∈ J , Bj ∩ Bj′ = ∅; therefore,

P
i∈I fi =

P
j∈J fij ≤P

j∈J
`P

i∈Bj
x′ijfij

´
≤
P
j∈J y

′
ifij ≤

P
j∈J y

′
ifi, proving

the following claim:

Claim 6.3 In each round,
P
i∈I fi ≤

P
i∈∪jBj

y′ifi.

Like our previous analyses, we will define a client-to-facility
assignment π convenient for the proof. For each j ∈ C, if
ij ∈ FA, let πj = ij ; otherwise, set πj = ij′ , where j′ is the
client that causes ij to be shut down (i.e., either ij ∈ Bj′ and
j′ was process in a previous iteration, or both j and j′ are
processed in the same iteration but there exists i ∈ Bj ∩Bj′).

Claim 6.4 Let j be a client. If ij ∈ FA, then d(j, πj) ≤
(1 + α)δj; otherwise, d(j, πj) ≤ 3(1 + α)(1 + ε)δj.

Proof. If ij ∈ FA, then by Lemma 6.2, d(j, πj) ≤ (1 +
α)δj . If ij 6∈ FA, we know that there must exist i ∈ Bj and
j′ such that i ∈ Bj′ and δj′ ≤ (1 + ε)δj . Thus, applying
Lemma 6.2 and the triangle inequality, we have d(j, πj) ≤
d(j, i) + d(i, j′) + d(j′, ij′) ≤ 3(1 + α)(1 + ε)δj .

Running Time Analysis: The above algorithm will ter-
minate in at most O(log1+εm) rounds because the prepro-
cessing step ensures the ratio between the maximum and
the minimum δj values are polynomially bounded. Like
previous analyses, steps 1 – 2 can be accomplished in O(1)
basic matrix operations, and step 3 in O(logm) basic ma-
trix operations on matrices of size m. This yields a total
of O(log1+εm logm) basic matrix operations, proving the
following theorem:

Theorem 6.5 Given an optimal LP solution for the primal
LP in Figure 1, there is an RNC rounding algorithm yielding
a (4 + ε)-approximation with O(m logm log1+εm) work. It
is cache efficient.

7. k-MEDIAN: LOCAL SEARCH
Local search, LP rounding, and Lagrangian relaxation are

among the main techniques for approximation algorithms

for k-median. In this section, building on the algorithms
from previous sections, we present an algorithm for the k-
median problem, based on local-search techniques. The
natural local-search algorithm for k-median is very simple:
starting with any set FA of k facilities, find some i ∈ FA
and i′ ∈ F \ FA such that swapping them decreases the
k-median cost, and repeat until no such moves can be found.
Finding an improving swap or identifying that none exists
takes O(k(n− k)n) time sequentially, where n is the number
of nodes in the instance. This algorithm is known to be a
5-approximation [1, 14].

The key ideas in this section are that we can find a good
initial solution S0 quickly and perform each local-search step
fast. Together, this means that only a small number of
local-search steps is needed, and each step can be performed
fast. To find a good initial solution, we observe that any
optimal k-center solution is an n-approximation for k-median.
Therefore, we will use the 2-approximation from Section 6.1
as a factor-(2n) solution for the k-median problem. At the
beginning of the algorithm, for each j ∈ V , we order the
facilities by their distance from j, taking O(n2 logn) work
and O(logn) depth.

Let 0 < ε < 1 be fixed. We say that a swap (i, i′) such that
i ∈ FA and i′ ∈ F \ FA is improving if kMed(FS − i+ i′) <
(1 − β/k)kMed(FS), where β = ε/(1 + ε). The parallel
algorithm proceeds as follows. In each round, find and apply
an improving swap as long as there is one. We now describe
how to perform each local-search step fast. During the
execution, the algorithm keeps track of ϕj , the facility client
j is assigned to, for all j ∈ V . We will consider all possible
test swaps i ∈ FA and i′ ∈ V \ FA simultaneously in parallel.
For each potential swap (i, i′), every client can independently
compute ∆j = d(j, FA − i+ i′)− d(j, FA); this computation
trivially takes O(nc) work and O(1) depth, since we know
ϕj and the distances are presorted. From here, we know
that kMed(FA − i+ i′)− kMed(FA) =

P
j ∆j , which can

be computed in O(n) work and O(logn) depth. Therefore,
in O(k(n − k)n) work and O(logn) depth, we can find an
improving swap or detect that none exists. Finally, a round
concludes by applying an improving swap to FA and updating
the ϕj values.

Arya et al. [1] show that the number of rounds is bounded
by

O
“

log1/(1−β/k)

`
kMed(S0)/opt

´”
= O

“
log1/(1−β/k)(n)

”
Since for 0 < ε < 1, ln

`
1/(1− β/k)

´
≤ 2

k
ln (1/(1− β)), we

have the following theorem, assuming constant k, which is
often the case in many applications:

Theorem 7.1 For constant k, there is an NC O(k2(n −
k)n log1+ε(n))-work algorithm which gives a factor-(5 + ε)
approximation for k-median.

Remarks. Relative to the sequential algorithm, this algorithm
is work efficient—regardless of the range of k. In addition to
k-median, this approach is applicable to k-means, yielding
an (81 + ε)-approximation [14] in general metric spaces and
a (25 + ε)-approximation for the Euclidean space [20], and
the same parallelization techniques can be used to achieve
the same running time. Furthermore, there is a factor-3
approximation local-search algorithm for facility location, in
which a similar idea can be used to perform each local-search



step efficiently; however, we do not know how to bound the
number of rounds.

8. CONCLUSION
This paper studies the design and analysis of parallel

approximation algorithms for facility-location problems, in-
cluding facility location, k-center, k-median, and k-means.
We presented several efficient algorithms, based on a diverse
set of approximation algorithms techniques.
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