
Near Linear-Work Parallel SDD Solvers, Low-Diameter
Decomposition, and Low-Stretch Subgraphs

Guy E. Blelloch Anupam Gupta Ioannis Koutis† Gary L. Miller
Richard Peng Kanat Tangwongsan

Carnegie Mellon University and †University of Puerto Rico, Rio Piedras

{guyb, anupamg, i.koutis, glmiller, yangp, ktangwon}@cs.cmu.edu

ABSTRACT
This paper presents the design and analysis of a near linear-work
parallel algorithm for solving symmetric diagonally dominant (SDD)
linear systems. On input of a SDD n-by-n matrix A with m non-
zero entries and a vector b, our algorithm computes a vector x̃ such
that ‖x̃−A+b‖A ≤ ε · ‖A+b‖A in O(m logO(1) n log 1

ε
) work

and O(m1/3+θ log 1
ε
) depth for any fixed θ > 0.

The algorithm relies on a parallel algorithm for generating low-
stretch spanning trees or spanning subgraphs. To this end, we first
develop a parallel decomposition algorithm that in polylogarithmic
depth and Õ(|E|) work1, partitions a graph into components with
polylogarithmic diameter such that only a small fraction of the
original edges are between the components. This can be used to
generate low-stretch spanning trees with average stretch O(nα) in
O(n1+α) work and O(nα) depth. Alternatively, it can be used to
generate spanning subgraphs with polylogarithmic average stretch
in Õ(|E|) work and polylogarithmic depth. We apply this subgraph
construction to derive our solver.

By using the linear system solver in known applications, our
results imply improved parallel randomized algorithms for several
problems, including single-source shortest paths, maximum flow,
min-cost flow, and approximate max-flow.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity

General Terms
Algorithms, Theory

Keywords
Parallel algorithms, linear systems, low-stretch spanning trees, low-
stretch subgraphs, low-diameter decomposition

1The Õ(·) notion hides polylogarithmic factors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’11, June 4–6, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0743-7/11/06 ...$10.00.

1. INTRODUCTION
Solving a system of linear equations Ax = b is a fundamental

computing primitive that lies at the core of many numerical and
scientific computing algorithms, including the popular interior-point
algorithms. The special case of symmetric diagonally dominant
(SDD) systems has seen substantial progress in recent years; in par-
ticular, the ground-breaking work of Spielman and Teng showed how
to solve SDD systems to accuracy ε in time Õ(m log(1/ε)), where
m is the number of non-zeros in the n× n-matrix A.2 This is algo-
rithmically significant since solving SDD systems has implications
to computing eigenvectors, solving flow problems, finding graph
sparsifiers, and problems in vision and graphics (see [Spi10, Ten10]
for these and other applications).

In the sequential setting, the current best SDD solvers run in
O(m log2 n(log log n)O(1) log(1/ε)) time [KMP10]. However,
with the exception of the special case of planar SDD systems [KM07],
we know of no previous parallel SDD solvers that perform near-
linear3 work and achieve non-trivial parallelism. This raises a natural
question: Is it possible to solve an SDD linear system in o(n) depth
and Õ(m) work? We answer this question affirmatively:

Theorem 1.1 For any fixed θ > 0 and any ε > 0, there is an
algorithm SDDSolve that on input an n× n SDD matrix A with m
non-zero elements and a vector b, computes a vector x̃ such that
‖x̃−A+b‖A ≤ ε · ‖A+b‖A in O(m logO(1) n log 1

ε
) work and

O(m1/3+θ log 1
ε
) depth.

In the process, we give parallel algorithms for constructing graph
decompositions with strong-diameter guarantees, and parallel al-
gorithms to construct low-stretch spanning trees and low-stretch
ultra-sparse subgraphs, which may be of independent interest. An
overview of these algorithms and their underlying techniques is
given in Section 3.

Some Applications. Let us mention some of the implications of
Theorem 1.1, obtained by plugging it into known reductions.

— Construction of Spectral Sparsifiers. Spielman and Srivastava
[SS08] showed that spectral sparsifiers can be constructed using
O(logn) Laplacian solves, and using our theorem we get spectral
and cut sparsifiers in Õ(m1/3+θ) depth and Õ(m) work.

— Flow Problems. Daitsch and Spielman [DS08] showed that
various graph optimization problems, such as max-flow, min-cost

2The Spielman-Teng solver and all subsequent improvements are
randomized algorithms. As a consequence, all algorithms relying
on the solvers are also randomized. For simplicity, we omit standard
complexity factors related to the probability of error.
3i.e. linear up to polylog factors.

flow, and lossy flow problems, can be reduced to Õ(m1/2) appli-
cations4 of SDD solves via interior point methods described in
[Ye97, Ren01, BV04]. Combining this with our main theorem im-
plies that these algorithms can be parallelized to run in Õ(m5/6+θ)

depth and Õ(m3/2) work. This gives the first parallel algorithm
with o(n) depth which is work-efficient to within polylog(n) fac-
tors relative to the sequential algorithm for all problems analyzed in
[DS08]. In some sense, the parallel bounds are more interesting than
the sequential times because in many cases the results in [DS08] are
not the best known sequentially (e.g. max-flow)—but do lead to the
best know parallel bounds for problems that have traditionally been
hard to parallelize. Finally, we note that although [DS08] does not
explicitly analyze shortest path, their analysis naturally generalizes
the LP for it.

2. PRELIMINARIES AND NOTATION
Throughout the paper, we use the notation Õ(f(n)) to mean

O(f(n) polylog(f(n))). We use A]B to denote disjoint unions,
and [k] to denote the set {1, 2, . . . , k}. Given a graph G = (V,E),
let dist(u, v) denote the edge-count distance (or hop distance) be-
tween u and v, ignoring the edge lengths. When the graph has
edge lengths w(e) (also denoted by we), let dG(u, v) denote the
edge-length distance, the shortest path (according to these edge
lengths) between u and v. If the graph has unit edge lengths, the
two definitions coincide. We drop subscripts when the context
is clear. We denote by V (G) and E(G), respectively, the set of
nodes and the set of edges, and use n = |V (G)| and m = |E(G)|.
For an edge e = {u, v}, the stretch of e on G′ is strG′(e) =
dG′(u, v)/w(e). The total stretch of G = (V,E,w) with respect
to G′ is strG′(E(G)) =

∑
e∈E(G) strG′(e).

Given G = (V,E), a distance function δ (which is either dist
or d), and a partition of V into C1] C2] . . .] Cp, let G[Ci]
denote the induced subgraph on set Ci. The weak diameter of
Ci is maxu,v∈Ci δG(u, v), whereas the strong diameter of Ci is
maxu,v∈Ci δG[Ci](u, v); the former measures distances in the orig-
inal graph whereas the latter measures distances within the induced
subgraph. The strong (or weak) diameter of the partition is the
maximum strong (or weak) diameter over all the components Ci’s.

Graph Laplacians. For a fixed, but arbitrary, numbering of the
nodes and edges in a graph G = (V,E), the Laplacian LG of G is
the |V |-by-|V | matrix given by

LG(i, j) =

{
−wij if i 6= j∑
{j,i}∈E(G) wij if i = j

,

When the context is clear, we use G and LG interchangeably. Given
two graphs G and H and a scalar µ ∈ R, we say G � µH if
µLH − LG is positive semidefinite, or equivalently x>LGx ≤
µx>LHx for all vector x ∈ R|V |.
Matrix Norms, SDD Matrices. For a matrix A, we denote by A+

the Moore-Penrose pseudoinverse of A (i.e., A+ has the same null
space as A and acts as the inverse of A on its image). Given a
symmetric positive semi-definite matrix A, the A-norm of a vector
x is defined as ‖x‖A =

√
x>Ax. A matrix A is symmetrically

diagonally dominant (SDD) if it is symmetric and for all i, Ai,i ≥∑
j 6=i |Ai,j |. Solving an SDD system reduces in O(m) work and

O(logO(1) m) depth to solving a graph Laplacian (a subclass of
SDD matrices corresponding to undirected weighted graphs) [Gre96,
Section 7.1].

4here Õ hides logU factors as well, where it’s assumed that the
edge weights are integers in the range [1 . . . U]

Parallel Models. We analyze algorithms in the standard PRAM
model, focusing on the work and depth parameters of the algorithms.
By work, we mean the total operation count—and by depth, we mean
the longest chain of dependencies (i.e., parallel time in PRAM).
Parallel Ball Growing. Let BG(s, r) denote the ball of edge-
count distance r from a source s, i.e., BG(s, r) = {v ∈ V (G) :
distG(s, v) ≤ r}. We rely on an elementary form of parallel
breadth-first search to compute BG(s, r). The algorithm visits the
nodes level by level as they are encountered in the BFS order. More
precisely, level 0 contains only the source node s, level 1 contains
the neighbors of s, and each subsequent level i + 1 contains the
neighbors of level i’s nodes that have not shown up in a previous
level. On standard parallel models (e.g., CRCW), this can be com-
puted in O(r logn) depth and O(m′) work, where m′ is the total
number of edges encountered in the search. Our applications apply
ball growing on r roughly O(logO(1) n), resulting in a small depth
bound. The alternative approach of repeatedly squaring a matrix
gives a better depth bound for large r at the expense of a much larger
work bound (about n3). The idea of small-radius parallel ball grow-
ing has previously been employed in the context of approximate
shortest paths (see, e.g., [KS97, Coh00]).

3. OVERVIEW OF OUR TECHNIQUES
In the general solver framework of Spielman and Teng [ST06,

KMP10], near linear-time SDD solvers rely on a suitable precondi-
tioning chain of progressively smaller graphs. Assuming that we
have an algorithm for generating low-stretch spanning trees, the
algorithm as given in [KMP10] parallelizes under the following
modifications: (i) perform the partial Cholesky factorization in par-
allel and (ii) terminate the preconditioning chain with a graph that
is of size approximately m1/3. The details in Section 6 are the
primary motivation of the main technical part of the paper, a parallel
implementation of a modified version of Alon et al.’s low-stretch
spanning tree algorithm [AKPW95].

More specifically, as a first step, we find an embedding of graphs
into a spanning tree with average stretch 2O(

√
logn log logn) in Õ(m)

work and O(2O(
√

logn log logn) log ∆) depth, where ∆ is the ratio
of the largest to smallest distance in the graph. The original AKPW
algorithm relies on a parallel graph decomposition scheme of Awer-
buch [Awe85], which takes an unweighted graph and breaks it into
components with a specified diameter and few crossing edges. While
such schemes are known in the sequential setting, they do not paral-
lelize readily because removing edges belonging to one component
might increase the diameter or even disconnect subsequent compo-
nents. We present the first near linear-work parallel decomposition
algorithm that also gives strong-diameter guarantees, in Section 4,
and the tree embedding results in Section 5.1.

Ideally, we would have liked for our spanning trees to have a
polylogarithmic stretch, computable by a polylogarithmic depth,
near linear-work algorithm. However, for our solvers, we make the
additional observation that we do not really need a spanning tree
with small stretch; it suffices to give an “ultra-sparse” graph with
small stretch, one that has onlyO(m/ polylog(n)) edges more than
a tree. Hence, we present a parallel algorithm in Section 5.2 which
outputs an ultra-sparse graph with O(polylog(n)) average stretch,
performing Õ(m) work with O(polylog(n)) depth. Note that this
removes the dependence of log ∆ in the depth, and reduces both the
stretch and the depth from 2O(

√
logn log logn) to O(polylog(n)).5

5As an aside, this construction of low-stretch ultra-sparse graphs
shows how to obtain the Õ(m)-time linear system solver of Spiel-
man and Teng [ST06] without using their low-stretch spanning trees
result [EEST05, ABN08].

When combined with the aforementioned routines for constructing
a SDD solver presented in Section 6, this low-stretch spanning
subgraph construction yields a parallel solver algorithm.

4. PARALLEL LOW-DIAMETER DECOM-
POSITION

In this section, we present a parallel algorithm for partitioning
a graph into components with low (strong) diameter while cutting
only a few edges in each of the k disjoint subsets of the input edges.
The sequential version of this algorithm is at the heart of the AKPW
low-stretch spanning tree algorithm [AKPW95].

The outer layer of the AKPW algorithm (cf. Section 5) can be
viewed as bucketing the input edges by weight, then partitioning
and contracting them repeatedly. In this view, a number of edge
classes are “reduced” simultaneously in an iteration. Further, as we
are required to output a tree at the end, the components need to have
low strong-diameter (i.e., one could not take “shortcuts” through
other components). In the sequential case, this requirement is met
by removing components one after another; though, this does not
parallelize readily. We deal with this issue by growing balls from
multiple sites and assigning vertices to the first region that reaches
them. With suitable “jitters” in the start time, we can lower the
probability of an edge going across two regions. This probability
also depends on the number of regions that could reach such an edge.
To keep this number small, we use a repeated sampling procedure
motivated by Cohen’s (β,W)-cover construction [Coh93].

The pseudocode of our algorithm is presented in Algorithm 4.1.
For this algorithm, the graphG is unweighted andE is composed of
k edge classesE1]· · ·]Ek. As defined earlier, distG[Ci](·, ·) mea-
sures the edge-count shortest-path distance (i.e., hop count) in the
graph induced on the componentCi. We use dist(t) as shorthand for
distGt , and also define B(t)(u, r)

def
= BG(t)(u, r) = {v ∈ V (t) :

dist(t)(u, v) ≤ r}. (Note that X(t) = ∪s∈S(t)B(t)(s, r(t) − δ(t)
s)

in Steps ??–??) We define E(t)
j := E(t) ∩ Ej for all j ∈ [k].

Algorithm 4.1 Partition (G = (V,E = E1] · · ·] Ek), ρ) —
Partition an input graph G into components of radius at most ρ.

Let G(1) = (V (1), E(1)) ← G. Define R = ρ/(2 logn). Create empty
collection of components C.

For t = 1, 2, . . . , T = 2 log2 n,

1. Randomly sample S(t) ⊆ V (t), where |S(t)|| = σt =

12nt/T−1|V (t)| logn, or use S(t) = V (t) if |V (t)| < σt.

2. For each “center” s ∈ S(t), draw δ
(t)
s uniformly at random from

Z ∩ [0, R].

3. Let r(t) ← (T − t+ 1)R.

4. For each center s ∈ S(t), compute the ball B(t)
s = B(t)(s, r(t) −

δ
(t)
s).

5. Let X(t) = ∪s∈S(t)B
(t)
s .

6. Create components {C(t)
s | s ∈ S(t)} by assigning each u ∈ X(t)

to the component C(t)
s such that s minimizes distG(t) (u, s) + δ

(t)
s

(breaking ties lexicographically).

7. Add non-empty C(t)
s components to C.

8. Set V (t+1) ← V (t) \X(t), and letG(t+1) ← G(t)[V (t+1)]. Quit
early if V (t+1) is empty.

If there is some i such thatEi has more than |Ei| c1·k log3 n
ρ

edges between
components, restart from the beginning. (Recall that k was the number of
edge classes.)

Return C.

The main theorem of this section is the following:

Theorem 4.1 (Parallel Low-Diameter Decomposition) Given an
input graph G = (V,E1] . . .] Ek) with k edge classes and a

“radius” parameter ρ, the algorithm Partition(G, ρ) outputs a
partition of V into components C = (C1, C2, . . . , Cp), each with
center si such that

1. the center si ∈ Ci for all i ∈ [p],

2. for each i, every u ∈ Ci satisfies distG[Ci](si, u) ≤ ρ, and

3. for all j = 1, . . . , k, the number of edges in Ej that go
between components is at most |Ej | · c1·k log3 n

ρ
, where c1 is

an absolute constant.
Furthermore, Partition runs in O(m log2 n) expected work and
O(ρ log2 n) expected depth.

Before proceeding with the analysis, we point out that it is pos-
sible for some component C(t)

s to remain empty in Step 6; indeed,
because of the “jitter” terms δ(t)

i , some sampled vertex s ∈ S(t)

may be assigned to C(t)

s′ rather than C(t)
s .

We begin by proving properties (1)–(2) of Theorem 4.1. First, we
state an easy-to-verify fact:

Fact 4.2 If vertex u lies in component C(t)
s , then dist(t)(s, u) ≤

r(t). Moreover, u ∈ B(t)
s .

We also need the following lemma to argue about strong diameter.

Lemma 4.3 If vertex u ∈ C(t)
s , and vertex v ∈ V (t) lies on any

u-s shortest path in G(t), then v ∈ C(t)
s .

PROOF. Since u ∈ C(t)
s , Fact 4.2 implies u belongs to B(t)

s . But
dist(t)(v, i) < dist(t)(u, i), and hence v belongs to B(t)

s and X(t)

as well. This implies that v is assigned to some component C(t)
j ;

we claim j = s.
For a contradiction, assume that j 6= s, and hence dist(t)(v, j) +

δ
(t)
j ≤ dist(t)(v, s) + δ

(t)
s . In this case dist(t)(u, j) + δ

(t)
j ≤

dist(t)(u, v)+dist(t)(v, j)+δ
(t)
j (by the triangle inequality). Now

using the assumption, this expression is at most dist(t)(u, v) +

dist(t)(v, s) + δ
(t)
s = dist(t)(u, s) + δ

(t)
s (since v lies on the

shortest u-s path). But then, u would be also assigned to C(t)
j ,

a contradiction.

Hence, for each non-empty component C(t)
s , its center s lies

within the component (since it lies on the shortest path from s

to any u ∈ C
(t)
s), which proves Theorem 4.1(1). Moreover, by

Fact 4.2 and Lemma 4.3, the (strong) radius is at most TR, proving
Theorem 4.1(2). It now remains to prove the third property, and the
work and depth bounds.

Lemma 4.4 For any vertex u ∈ V , with probability at least 1−n−6,
there are at most 68 log2 n pairs6 (s, t) such that s ∈ S(t) and
u ∈ B(t)(s, r(t)),

We will prove this lemma in a series of claims.

Claim 4.5 For t ∈ [T] and v ∈ V (t), if |B(t)(v, r(t+1))| ≥
n1−t/T , then v ∈ X(t) w.p. at least 1− n−12.
6In fact, for a given s, there is a unique t—if this s is ever chosen
as a “starting point.”

PROOF. First, note that for any s ∈ S(t), r(t)−δs ≥ r(t)−R =

r(t+1), and so if s ∈ B(t)(v, r(t+1)), then v ∈ B(t)
s and hence in

X(t). Therefore, Pr
[
v ∈ X(t)

]
≥ Pr

[
S(t) ∩B(t)(v, r(t+1)) 6= ∅

]
,

the probability that a random subset of V (t) of size σt hits the
ball B(t)(v, r(t+1)). But, Pr

[
S(t) ∩B(t)(v, r(t+1)) 6= ∅

]
≥ 1 −(

1− |B
(t)(v,r(t+1))|
|V (t)|

)σt
, which is at least 1− n−12.

Claim 4.6 For t ∈ [T] and v ∈ V , the number of s ∈ S(t) such
that v ∈ B(t)(s, r(t)) is at most 34 logn w.p. at least 1− n−8.

PROOF. For t = 1, the size σ1 = O(logn) and hence the claim
follows trivially. For t ≥ 2, we condition on all the choices made
in rounds 1, 2, . . . , t− 2. Note that if v does not survive in V (t−1),
then it does not belong to V (t) either, and the claim is immediate. So,
consider two cases, depending on the size of the ballB(t−1)(v, r(t))
in iteration t− 1:
— Case 1. If |B(t−1)(v, r(t))| ≥ n1−(t−1)/T , then by Claim 3.5,
with probability at least 1 − n−12, we have v ∈ X(t−1), so v
would not belong to V (t) and this means no s ∈ S(t) will satisfy
v ∈ B(t)(s, r(t)), proving the claim for this case.
— Case 2. Otherwise, |B(t−1)(v, r(t))| < n1−(t−1)/T . We have
|B(t)(v, r(t))| ≤ |B(t−1)(v, r(t))| < n1−(t−1)/T as B(t)(v, r(t))

⊆ B(t−1)(v, r(t)). Now let X be the number of s such that v ∈
B(t)(s, r(t)), so X =

∑
s∈S(t) 1{s∈B(t)(v,r(t))}. Over the random

choice of S(t),

Pr
[
s ∈ B(t)(v, r(t))

]
=
|B(t)(v, r(t))|
|V (t)|

≤ 1

|V (t)|
n1−(t−1)/T ,

which gives

E[X] = σt · Pr
[
s ∈ B(t)(v, r(t))

]
≤ 17 logn.

To obtain a high probability bound for X , we will apply the tail
bound in Lemma A.1. Note that X is simply a hypergeometric
random variable with the following parameters setting: total balls
N = |V (t)|, red balls M = |B(t)(v, r(t))|, and the number balls
drawn is σt. Therefore, Pr[X ≥ 34 logn] ≤ exp{− 1

4
· 34 logn},

so X ≤ 34 logn with probability at least 1− n−8.
Hence, regardless of what choices we made in rounds 1, 2, . . . , t−

2, the conditional probability of seeing more than 34 logn different
s’s is at most n−8. Hence, we can remove the conditioning, and the
claim follows.

Lemma 4.7 If for each vertex u ∈ V , there are at most 68 log2 n
pairs (s, t) such that s ∈ S(t) and u ∈ B(t)(s, r(t)), then for an
edge uv, the probability that u belongs to a different component
than v is at most 68 log2 n/R.

PROOF. We define a center s ∈ S(t) as “separating” u and v if
|B(t)
s ∩ {u, v}| = 1. Clearly, if u, v lie in different components

then there is some t ∈ [T] and some center s that separates them.
For a center s ∈ S(t), this can happen only if δs = R− dist(s, u),
since dist(s, v) ≤ dist(s, u) − 1. As there are R possible values
of δs, this event occurs with probability at most 1/R. And since
there are only 68 log2 n different centers s that can possibly cut the
edge, using a trivial union bound over them gives us an upper bound
of 68 log2 n/R on the probability.

By Markov’s inequality and Lemma 4.4, which shows that the
premise to Lemma 4.7 holds with probability exceeding 1− o(1) ≥
1/2, we have the following corollary:

Corollary 4.8 With probability at least 1/4, for all i ∈ [k], the
number of edges in Ei that are between components is at most
|Ei| 136k log2 n

R
.

We now combine these lemmas to prove Theorem 4.1.

Proof of Theorem 4.1: Using R = ρ/(2 logn) and c1 = 136,
Corollary 4.8 gives that the last step should be successful with
probability at least 1/4. Therefore, the algorithm will pass the final
check step in 4 rounds in expectation. Now consider the depth/work
required each time the algorithm is run from the start to right before
the final check step. Each computation of B(t)(v, r(t)) can be done
using a BFS. Since r(t) ≤ ρ, the depth is bounded by O(ρ logn)
per iteration. By Lemma 4.4, each vertex is reached by at most
O(log2 n) starting points, yielding a total work of O(m log2 n). �

5. PARALLEL LOW-STRETCH SPANNING
TREES AND SUBGRAPHS

This section presents parallel algorithms for low-stretch spanning
trees and for low-stretch spanning subgraphs. To obtain the low-
stretch spanning tree algorithm, we apply the construction of Alon et
al. [AKPW95] (henceforth, the AKPW construction), together with
the parallel graph partition algorithm from the previous section. The
resulting procedure, however, is not ideal for two reasons: the depth
of the algorithm depends on the “spread” ∆—the ratio between the
heaviest edge and the lightest edge—and even for polynomial spread,
both the depth and the average stretch are super-logarithmic (both
of them have a 2O(

√
logn·log logn) term). Fortunately, for our appli-

cation, we observe that we do not need spanning trees but merely
low-stretch sparse graphs. In Section 5.2, we describe modifications
to this construction to obtain a parallel algorithm which computes
sparse subgraphs that give us only polylogarithmic average stretch
and that can be computed in polylogarithmic depth and Õ(m) work.
We believe that this construction may be of independent interest.

5.1 Low-Stretch Spanning Trees
Using the AKPW construction, along with the Partition proce-

dure from Section 4, we will prove the following theorem:

Theorem 5.1 (Low-Stretch Spanning Tree) There is an algorithm
AKPW(G) which given as input a graph G = (V,E,w), produces a
spanning tree in O(logO(1) n · 2O(

√
logn·log logn) log ∆) expected

depth and Õ(m) expected work such that the total stretch of all
edges is bounded by m · 2O(

√
logn·log logn).

Algorithm 5.1 AKPW (G = (V,E,w)) — a low-stretch spanning
tree construction.

i. Normalize the edges so that min{w(e) : e ∈ E} = 1.
ii. Let y = 2

√
6 logn·log logn, τ = d3 log(n)/ log ye, z =

4c1yτ log
3 n. Initialize T = ∅.

iii. Divide E into E1, E2, . . . , where Ei = {e ∈ E | w(e) ∈
[zi−1, zi)}.
Let E(1) = E and E(1)

i = Ei for all i.
iv. For j = 1, 2, . . . , until the graph is exhausted,

1. (C1, C2, . . . , Cp) = Partition((V (j),]i≤jE
(j)
i), z/4)

2. Add a BFS tree of each component to T .
3. Define graph (V (j+1), E(j+1)) by contracting all edges within

the components and removing all self-loops (but maintaining
parallel edges). Create E(j+1)

i from E
(j)
i taking into account

the contractions.
v. Output the tree T .

Presented in Algorithm 5.1 is a restatement of the AKPW al-
gorithm, except that here we will use our parallel low-diameter
decomposition for the partition step. In words, iteration j of Al-
gorithm 5.1 looks at a graph (V (j), E(j)) which is a minor of the
original graph (because components were contracted in previous it-
erations, and because it only considers the edges in the first j weight
classes). It uses Partition((V,]j≤kEj), z/4) to decompose this
graph into components such that the hop radius is at most z/4 and
each weight class has only 1/y fraction of its edges crossing be-
tween components. (Parameters y, z are defined in the algorithm
and are slightly different from the original settings in the AKPW
algorithm.) It then shrinks each of the components into a single node
(while adding a BFS tree on that component to T), and iterates on
this graph. Adding these BFS trees maintains the invariant that the
set of original nodes which have been contracted into a (super-)node
in the current graph are connected in T ; hence, when the algorithm
stops, we have a spanning tree of the original graph—hopefully of
low total stretch.

We begin the analysis of the total stretch and running time by
proving two useful facts:

Fact 5.2 The number of edges |E(j)
i | is at most |Ei|/yj−i.

PROOF. If we could ensure that the number of weight classes
in play at any time is at most τ , the number of edges in each class
would fall by at least a factor of c1τ log3 n

z/4
= 1/y by Theorem 4.1(3)

and the definition of z, and this would prove the fact. Now, for the
first τ iterations, the number of weight classes is at most τ just
because we consider only the first j weight classes in iteration j.
Now in iteration τ + 1, the number of surviving edges of E1 would
fall to |E1|/yτ ≤ |E1|/n3 < 1, and hence there would only be
τ weight classes left. It is easy to see that this invariant can be
maintained over the course of the algorithm.

Fact 5.3 In iteration j, the radius of a component according to edge
weights (in the expanded-out graph) is at most zj+1.

PROOF. The proof is by induction on j. First, note that by The-
orem 4.1(2), each of the clusters computed in any iteration j has
edge-count radius at most z/4. Now the base case j = 1 follows by
noting that each edge in E1 has weight less than z, giving a radius
of at most z2/4 < zj+1. Now assume inductively that the radius in
iteration j − 1 is at most zj . Now any path with z/4 edges from
the center to some node in the contracted graph will pass through at
most z/4 edges of weight at most zj , and at most z/4 + 1 supern-
odes, each of which adds a distance of 2zj ; hence, the new radius is
at most zj+1/4 + (z/4 + 1)2zj ≤ zj+1 as long as z ≥ 8.

Applying these facts, we bound the total stretch of an edge class.

Lemma 5.4 For any i ≥ 1, strT (Ei) ≤ 4y2|Ei|(4c1τ log3 n)τ+1.

PROOF. Let e be an edge in Ei contracted during iteration j.
Since e ∈ Ei, we know w(e) > zi−1. By Fact 5.3, the path
connecting the two endpoints of e in F has distance at most 2zj+1.
Thus, strT (e) ≤ 2zj+1/zi−1 = 2zj−i+2. Fact 5.2 indicates that
the number of such edges is at most |E(j)

i | ≤ |Ei|/y
j−i. We

conclude that

strT (Ei) ≤
i+τ−1∑
j=i

2zj−i+2|Ei|/yj−i

≤ 4y2|Ei|(4c1τ log3 n)τ+1

Proof of Theorem 5.1: Summing across the edge classes gives
the promised bound on stretch. Now there are dlogz ∆e weight
classes Ei’s in all, and since each time the number of edges in a
(non-empty) class drops by a factor of y, the algorithm has at most
O(log ∆ + τ) iterations. By Theorem 4.1 and standard techniques,
each iteration does O(m log2 n) work and has O(z log2 n) =

O(logO(1) n · 2O(
√

logn·log logn)) depth in expectation. �

5.2 Low-Stretch Spanning Subgraphs
We now show how to alter the parallel low-stretch spanning tree

construction from the preceding section to give a low-stretch span-
ning subgraph construction that has no dependence on the “spread,”
and moreover has only polylogarithmic stretch. This comes at the
cost of obtaining a sparse subgraph with n− 1 +O(m/ polylog n)
edges instead of a tree, but suffices for our solver application. The
two main ideas behind these improvements are the following: Firstly,
the number of surviving edges in each weight class decreases by a
logarithmic factor in each iteration; hence, we could throw in all sur-
viving edges after they have been whittled down in a constant num-
ber of iterations—this removes the factor of 2O(

√
logn·log logn)from

both the average stretch and the depth. Secondly, if ∆ is large, we
will identify certain weight-classes with O(m/polylogn) edges,
which by setting them aside, will allow us to break up the chain
of dependencies and obtain O(polylogn) depth; these edges will
be thrown back into the final solution, adding O(m/ polylog n)
extra edges (which we can tolerate) without increasing the average
stretch.

5.2.1 The First Improvement
Let us first show how to achieve polylogarithmic stretch with

an ultra-sparse subgraph. Given parameters λ ∈ Z>0 and β ≥
c2 log3 n (where c2 = 2 · (4c1(λ+ 1))

1
2

(λ−1)), we obtain the new
algorithm SparseAKPW(G,λ, β) by modifying Algorithm 5.1 as
follows:

(1) use the altered parameters y = 1
c2
β/ log3 n and z = 4c1y(λ+

1) log3 n;

(2) in each iteration j, call Partition with at most λ+ 1 edge
classes—keep the λ classes E(j)

j , E
(j)
j−1, . . . , E

(j)
j−λ+1, but

then define a “generic bucket” E(j)
0 := ∪j′≤j−λE(j)

j′ as the
last part of the partition; and

(3) finally, output not just the tree T but the subgraph Ĝ =

T ∪ (∪i≥1E
(i+λ)
i).

Lemma 5.5 Given a graph G, parameters λ ∈ Z>0 and β ≥
c2 log3 n (where c2 = 2 · (4c1(λ + 1))

1
2

(λ−1)) the algorithm
SparseAKPW(G,λ, β) outputs a subgraph ofG with at most n−1+
m(c2(log3 n/β))λ edges and total stretch at most mβ2 log3λ+3 n.
Moreover, the expected work is Õ(m) and expected depth is
O((c1β/c2)λ log2 n(log ∆ + logn)).

PROOF. The proof parallels that for Theorem 5.1. Fact 5.3
remains unchanged. The claim from Fact 5.2 now remains true
only for j ∈ {i, . . . , i + λ − 1}; after that the edges in E

(j)
i

become part of E(j)
0 , and we only give a cumulative guarantee

on the generic bucket. But this does hurt us: if e ∈ Ei is con-
tracted in iteration j ≤ i + λ − 1 (i.e., it lies within a compo-
nent formed in iteration j), then strĜ(e) ≤ 2zj−i+2. And the
edges of Ei that survive till iteration j ≥ i + λ have stretch 1 be-
cause they are eventually all added to Ĝ; hence we do not have to
worry that they belong to the class E(j)

0 for those iterations. Thus,
strĜ(Ei) ≤

∑i+λ−1
j=i 2zj−i+2 · |Ei|/yj−i ≤ 4y2(z

y
)λ−1|Ei|.

Summing across the edge classes gives strĜ(E) ≤ 4y2(z
y

)λ−1m,
which simplifies to O(mβ2 log3λ+3 n). Next, the number of edges
in the output follows directly from the fact T can have at most n− 1
edges, and the number of extra edges from each class is only a
1/yλ fraction (i.e., |E(i+λ)

i | ≤ |Ei|/yλ from Fact 5.2). Finally, the
work remains the same; for each of the (log ∆ + τ) distance scales
the depth is still O(z log2 n), but the new value of z causes this to
become O((c1β/c2)λ log2 n).

5.2.2 The Second Improvement
The depth of the SparseAKPW algorithm still depends on log ∆,

and the reason is straightforward: the graph G(j) used in iteration
j is built by taking G(1) and contracting edges in each iteration—
hence, it depends on all previous iterations. However, the crucial
observation is that if we had τ consecutive weight classes Ei’s
which are empty, we could break this chain of dependencies at this
point. However, there may be no empty weight classes; but having
weight classes with relatively few edges is enough, as we show next.

Fact 5.6 Given a graph G = (V,E) and a subset of edges F ⊆ E,
let G′ = G \ F be a potentially disconnected graph. If Ĝ′ is a
subgraph of G′ with total stretch strĜ′(E(G′)) ≤ D, then the total
stretch of E on Ĝ := Ĝ′ ∪ F is at most |F |+D.

Consider a graph G = (V,E,w) with edge weights w(e) ≥ 1,
and let Ei(G) := {e ∈ E(G) | w(e) ∈ [zi−1, zi)} be the weight
classes. Then, G is called (γ, τ)-well-spaced if there is a set of spe-
cial weight classes {Ei(G)}i∈I such that for each i ∈ I , (a) there
are at most γ weight classes before the following special weight
class min{i′ ∈ I ∪ {∞} | i′ > i}, and (b) the τ weight classes
Ei−1(G), Ei−2(G), . . . , Ei−τ (G) preceding i are all empty.

Lemma 5.7 Given any graph G = (V,E), τ ∈ Z+, and θ ≤ 1,
there exists a graph G′ = (V,E′) which is (4τ/θ, τ)-well-spaced,
and |E′ \ E| ≤ θ · |E|. Moreover, G′ can be constructed in O(m)
work and O(logn) depth.

PROOF. Let δ = log ∆
log z

; note that the edge classes for G are
E1, . . . , Eδ , some of which may be empty. Denote by EJ the
union ∪i∈JEi. We construct G′ as follows: Divide these edge
classes into disjoint groups J1, J2, . . . ⊆ [δ], where each group
consists of dτ/θe consecutive classes. Within a group Ji, by an
averaging argument, there must be a range Li ⊆ Ji of τ consecutive
edge classes that contains at most a θ fraction of all the edges in
this group, i.e., |ELi | ≤ θ · |EJi | and |Li| ≥ τ . We form G′

by removing these the edges in all these groups Li’s from G, i.e.,
G′ = (V,E \ (∪iELi)). This removes only a θ fraction of all the
edges of the graph.

We claim G′ is (4τ/θ, τ)-well-spaced. Indeed, if we remove
the group Li, then we designate the smallest j ∈ [δ] such that
j > max{j′ ∈ Li} as a special bucket (if such a j exists). Since
we removed the edges in ELi , the second condition for being well-
spaced follows. Moreover, the number of buckets between a special
bucket and the following one is at most 2dτ/θe − (τ − 1) ≤ 4τ/θ.
Finally, these computations can be done inO(m) work andO(logn)
depth using standard techniques [JáJ92, Lei92].

Lemma 5.8 Let τ = 3log n/log y. Given a graph G which is
(γ, τ)-well-spaced, SparseAKPW can be computed on G with Õ(m)
work and O(c1

c2
γλβ log2 n) depth.

PROOF. Since G is (γ, τ)-well-spaced, each special bucket i ∈
I must be preceded by τ empty buckets. Hence, in iteration i

of SparseAKPW, any surviving edges belong to buckets Ei−τ or
smaller. However, these edges have been reduced by a factor of y
in each iteration and since τ > logy n

2, all the edges have been
contracted in previous iterations—i.e., E(i)

` for ` < i is empty.
Consider any special bucket i: we claim that we can construct the

vertex set V (i) that SparseAKPW sees at the beginning of iteration
i, without having to run the previous iterations. Indeed, we can
just take the MST on the entire graph G = G(1), retain only the
edges from buckets Ei−τ and lower, and contract the connected
components of this forest to get V (i). And once we know this
vertex set V (i), we can drop out the edges from Ei and higher
buckets which have been contracted (these are now self-loops), and
execute iterations i, i+ 1, . . . of SparseAKPW without waiting for
the preceding iterations to finish. Moreover, given the MST, all this
can be done in O(m) work and O(logn) depth.

Finally, for each special bucket i in parallel, we start running
SparseAKPW at iteration i. Since there are at most γ iterations until
the next special bucket, the total depth is only O(γz log2 n) =
O(c1

c2
γλβ log2 n).

Theorem 5.9 (Low-Stretch Subgraphs) Given a weighted graph
G, λ ∈ Z>0, and β ≥ c2 log3 n (where c2 = 2 · (4c1(λ +

1))
1
2

(λ−1)), there is an algorithm LSSubgraph(G, β, λ) that finds
a subgraph Ĝ such that

1. |E(Ĝ)| ≤ n− 1 +m
(
cLS

log3 n
β

)λ
2. The total stretch (of all E(G) edges) in the subgraph Ĝ is at

most by mβ2 log3λ+3 n,
where cLS (= c2 + 1) is a constant. Moreover, the procedure runs
in O(λβλ+1 log3−3λ n) depth and Õ(m) work. If λ = O(1) and
β = polylog(n), the depth term simplifies to O(logO(1) n).

PROOF. Given a graph G, we set τ = 3logn/log y and θ =
(log3 n/β)λ, and apply Lemma 5.7 to delete at most θm edges,
and get a (4τ/θ, τ)-well-spaced graph G′. Let m′ = |E′|. On
this graph, we run SparseAKPW to obtain a graph Ĝ′ with n− 1 +
m′(c2(log3 n/β))λ edges and total stretch at mostm′β2 log3λ+3 n;
moreover, Lemma 5.8 shows this can be computed with Õ(m) work
and O(c1

c2
(4τ/θ)λβ log2 n) = O(λβλ+1 log3−3λ n) depth.

Finally, we output the graph Ĝ = Ĝ′ ∪ (E(G) \ E(G′)); this
gives the desired bounds on stretch and the number of edges as
implied by Fact 5.6 and Lemma 5.5.

6. PARALLEL SDD SOLVER
In this section, we derive a parallel solver for symmetric diago-

nally dominant (SDD) linear systems, using the ingredients devel-
oped in the previous sections. The solver follows closely the line of
work of [ST03, ST06, KM07, KMP10]. Specifically, we will derive
a proof for the main theorem (Theorem 1.1), the statement of which
is reproduced below.

Theorem 1.1. For any fixed θ > 0 and any ε > 0,
there is an algorithm SDDSolve that on input an SDD
matrix A and a vector b computes a vector x̃ such that
‖x̃−A+b‖A ≤ ε · ‖A+b‖A in O(m logO(1) n log 1

ε
)

work and O(m1/3+θ log 1
ε
) depth.

In proving this theorem, we will focus on Laplacian linear sys-
tems. As noted earlier, linear systems on SDD matrices are re-
ducible to systems on graph Laplacians in O(log(m + n)) depth
and O(m+ n) work [Gre96]. Furthermore, because of the one-to-
one correspondence between graphs and their Laplacians, we will
use the two terms interchangeably.

The core of the near-linear time Laplacian solvers in [ST03,
ST06, KMP10] is a “preconditioning” chain of progressively smaller
graphs 〈A1 = A,A2, . . . , Ad〉, along with a well-understood re-
cursive algorithm, known as recursive preconditioned Chebyshev
method—rPCh, that traverses the levels of the chain and for each
visit at level i < d, performs O(1) matrix-vector multiplications
with Ai and other simple vector-vector operations. Each time the
algorithm reaches level d, it solves a linear system on Ad using a
direct method. Except for solving the bottom-level systems, all these
operations can be accomplished in linear work and O(log(m+ n))
depth. The recursion itself is based on a simple scheme; for each
visit at level i the algorithm makes at most κ′i recursive calls to
level i + 1, where κ′i ≥ 2 is a fixed system-independent integer.
Therefore, assuming we have computed a chain of preconditioners,
the total required depth is (up to a log) equal to the total number of
times the algorithm reaches the last (and smallest) level Ad.

6.1 Parallel Construction of Solver Chain
The construction of the preconditioning chain in [KMP10] relies

on a subroutine that on input a graphAi, constructs a slightly sparser
graph Bi which is spectrally related to Ai. This “incremental sparsi-
fication” routine is in turn based on the computation of a low-stretch
tree for Ai. The parallelization of the low-stretch tree is actually
the main obstacle in parallelizing the whole solver presented in
[KMP10]. Crucial to effectively applying our result in Section 5 is a
simple observation that the sparsification routine of [KMP10] only
requires a low-stretch spanning subgraph rather than a tree.Then,
with the exception of some parameters in its construction, the pre-
conditioning chain remains essentially the same.

The following lemma is immediate from Section 6 of [KMP10].

Lemma 6.1 Given a graph G and a subgraph Ĝ of G such that the
total stretch of all edges inG with respect to Ĝ ism ·S, a parameter
on condition number κ, and a success probability 1− 1/ξ, there is
an algorithm that constructs a graph H such that

1. G � H � κ ·G, and

2. |E(H)| = |E(Ĝ)|+ (cIS · S logn log ξ)/κ

inO(log2 n) depth andO(m log2 n) work, where cIS is an absolute
constant.

Although Lemma 6.1 was originally stated with Ĝ being a span-
ning tree, the proof in fact works without changes for an arbitrary
subgraph. For our purposes, ξ has to be at most O(logn) and that
introduces an additional O(log log n) term. For simplicity, in the
rest of the section, we will consider this as an extra logn factor.

Lemma 6.2 Given a weighted graph G, parameters λ and η such
that η ≥ λ ≥ 16, we can construct inO(log2ηλ n) depth and Õ(m)
work another graph H such that

1. G � H � 1
10
· logηλ n ·G

2. |E(H)| ≤ n− 1 +m · cPC/logηλ−2η−4λ (n),
where cPC is an absolute constant.

PROOF. Let Ĝ = LSSubgraph(G,λ, logη n). Then, Theo-
rem 5.9 shows that |E(Ĝ)| is at most

n− 1 +m

(
cLS · log3 n

β

)λ
= n− 1 +m

(
cLS

logη−3 n

)λ
Furthermore, the total stretch of all edges in G with respect to
Ĝ is at most S = mβ2 logλ+3 n ≤ m log2η+3λ+3 n. Applying

Lemma 6.1 with κ = 1
10

logηλ n gives H such that G � H �
1
10

logηλ n ·G and |E(H)| is at most

n− 1 +m ·
(

cλLS

logλ(η−3) n
+

10 · cIS log2η+3λ+5 n

logηλ n

)
≤ n− 1 +m · cPC

logηλ−2λ−3k−5 n

≤ n− 1 +m · cPC

logηλ−2η−4λ n
.

We now give a more precise definition of the preconditioning
chain we use for the parallel solver by giving the pseudocode for
constructing it.

Definition 6.3 (Preconditioning Chain) Consider a chain of graphs
C = 〈A1 = A,B1, A2, . . . , Ad〉, and denote by ni and mi the
number of nodes and edges of Ai respectively. We say that C is
preconditioning chain for A if

1. Bi = IncrementalSparsify(Ai).
2. Ai+1 = GreedyElimination(Bi).
3. Ai � Bi � 1/10 · κiAi, for some explicitly known integer
κi. 7

As noted above, the rPCh algorithm relies on finding the solution
of linear systems on Ad, the bottom-level systems. To parallelize
these solves, we make use of the following fact which can be found
in Sections 3.4. and 4.2 of [GVL96].

Fact 6.4 A factorization LL> of the pseudo-inverse of an n-by-n
LaplacianA, whereL is a lower triangular matrix, can be computed
in O(n) time and O(n3) work, and any solves thereafter can be
done in O(logn) time and O(n2) work.

Note that although A is not positive definite, its null space is
the space spanned by the all 1s vector when the underlying graph
is connected. Therefore, we can in turn drop the first row and
column to obtain a semi-definite matrix on which LU factorization
is numerically stable.

The routine GreedyElimination is a partial Cholesky factor-
ization (for details see [ST06] or [KMP10]) on vertices of degree at
most 2. From a graph-theoretic point of view, GreedyElimination
can be viewed as simply recursively removing nodes of degree one
and splicing out nodes of degree two. The sequential version of
GreedyElimination returns a graph with no degree 1 or 2 nodes.
The parallel version that we present below leaves some degree-2
nodes in the graph, but their number will be small enough to not
affect the complexity.

Lemma 6.5 If G has n vertices and n − 1 + m edges, then the
procedure GreedyElimination(G) returns a graph with at most
2m− 2 nodes in O(n+m) work and O(logn) depth whp.

PROOF. The sequential version of GreedyElimination(G) is
equivalent to repeatedly removing degree 1 vertices and splicing
out 2 vertices until no more exist while maintaining self-loops and
multiple edges (see, e.g., [ST03, ST06] and [Kou07, Section 2.3.4]).
Thus, the problem is a slight generalization of parallel tree contrac-
tion [MR89]. In the parallel version, we show that while the graph
has more than 2m− 2 nodes, we can efficiently find and eliminate a
7The constant of 1/10 in the condition number is introduced only
to simplify subsequent notation.

“large” independent set of degree two nodes, in addition to all degree
one vertices.

We alternate between two steps, which are equivalent to Rake

and Compress in [MR89], until the vertex count is at most 2m− 2:
Mark an independent set of degree 2 vertices, then

1. Contract all degree 1 vertices, and
2. Compress and/or contract out the marked vertices.
To find the independent set, we use a randomized marking algo-

rithm on the degree two vertices (this is used in place of maximal
independent set for work efficiency): Each degree two node flips a
coin with probability 1

3
of turning up heads; we mark a node if it is

a heads and its neighbors either did not flip a coin or flipped a tail.
We show that the two steps above will remove a constant fraction

of “extra” vertices. Let G is a multigraph with n vertices and
m+ n− 1 edges. First, observe that if all vertices have degree at
least three then n ≤ 2(m − 1) and we would be finished. So, let
T be any fixed spanning tree of G; let a1 (resp. a2) be the number
of vertices in T of degree one (resp. two) and a3 the number those
of degree three or more. Similarly, let b1, b2, and b3 be the number
vertices in G of degree 1, 2, and at least 3, respectively, where the
degree is the vertex’s degree in G.

It is easy to check that in expectation, these two steps remove
b1 + 4

27
b2 ≥ b1 + 1

7
b2 vertices. In the following, we will show that

b1+ 1
7
b2 ≥ 1

7
∆n, where ∆n = n−(2m−2) = n−2m+2 denotes

the number of “extra” vertices in the graph. Consider non-tree edges
and how they are attached to the tree T . Let m1, m2, and m3 be
the number of attachment of the following types, respectively:
(1) an attachment to x, a degree 1 vertex in T , where x has at least

one other attachment.
(2) an attachment to x, a degree 1 vertex in T , where x has no other

attachment.
(3) an attachment to a degree 2 vertex in T .

As each edge is incident on two endpoints, we have m1 +m2 +
m3 ≤ 2m. Also, we can lower bound b1 and b2 in terms of mi’s
and ai’s: we have b1 ≥ a1−m1/2−m2 and b2 ≥ m2 +a2−m3.
This gives

b1 + 1
7
b2 ≥ 2

7
(a1 −m1/2−m2) + 1

7
(m2 + a2 −m3)

= 2
7
a1 + 1

7
a2 − 1

7
(m1 +m2 +m3)

≥ 2
7
a1 + 1

7
a2 − 2

7
m.

Consequently, b1 + 1
7
b2 ≥ 1

7
(2a1 + a2 − 2m) ≥ 1

7
·∆n, where to

show the last step, it suffices to show that n+ 2 ≤ 2a1 + a2 for a
tree T of n nodes. WLOG, we may assume that all nodes of T have
degree either one or three, in which case 2a1 = n+ 2. Finally, by
Chernoff bounds, the algorithm will finish with high probability in
O(logn) rounds.

6.2 Parallel Performance of Solver Chain
Spielman and Teng [ST06, Section 5] gave a (sequential) time

bound for solving a linear SDD system given a preconditioner chain.
The following lemma extends their Theorem 5.5 to give parallel
runtime bounds (work and depth), as a function of κi’s and mi’s.
We note that in the bounds below, the m2

d term arises from the dense
inverse used to solve the linear system in the bottom level.

Lemma 6.6 There is an algorithm that given a preconditioner chain
C = 〈A1 = A,A2, . . . , Ad〉 for a matrixA, a vector b, and an error
tolerance ε, computes a vector x̃ such that

‖x̃−A+b‖A ≤ ε · ‖A+b‖A,

with depth bounded by(∑
1≤i≤d

∏
1≤j<i

√
κj

)
logn log

(
1
ε

)
≤ O

((∏
1≤j<d

√
κj

)
logn log

(
1
ε

))
and work bounded by ∑

1≤i≤d−1

mi ·
∏
j≤i

√
κj +m2

d

∏
1≤j<d

√
κj

 log
(

1
ε

)
.

To reason about Lemma 6.6, we will rely on the following lemma
about preconditioned Chebyshev iteration and the recursive solves
that happen at each level of the chain. This lemma is a restatement
of Spielman and Teng’s Lemma 5.3 (slightly modified so that the√
κi does not involve a constant, which shows up instead as constant

in the preconditioner chain’s definition).

Lemma 6.7 Given a preconditioner chain of length d, it is possible
to construct linear operators solveAi for all i ≤ d such that

(1− e−2)A+
i � solveAi � (1 + e2)

and solveAi is a polynomial of degree
√
κi involving solveAi+1 and

4 matrices with mi non-zero entries (from GreedyElimination).

Armed with this, we state and prove the following lemma:

Lemma 6.8 For ` ≥ 1, given any vector b, the vector solveA` · b
can be computed in depth

logn
∑
`≤i≤d

∏
`≤j<i

√
κj

and work ∑
`≤i≤d−1

mi ·
∏
`≤j≤i

√
κj +m2

d

∏
`≤j<d

√
κj

PROOF. The proof is by induction in decreasing order on `.
When d = `, all we are doing is a matrix multiplication with a
dense inverse. This takes O(logn) depth and O(m2

d) work.
Suppose the result is true for ` + 1. Then since solveA` can be

expressed as a polynomial of degree
√
κ` involving an operator that

is solveA`+1 multiplied by at most 4 matrices with O(m`) non-zero
entries. We have that the total depth is

logn
√
κ` +

√
κ` ·

logn
∑

`+1≤i≤d

∏
`+1≤j<i

√
κj


= logn

∑
`≤i≤d

∏
`≤j<i

√
κj

and the total work is bounded by
√
κ`m`+

√
κ` ·

 ∑
`+1≤i≤d−1

mi ·
∏

`+1≤j≤i

√
κj +m2

d

∏
`+1≤j<d

√
κj


=

∑
`≤i≤d−1

mi ·
∏
`≤j≤i

√
κj +m2

d

∏
`≤j<d

√
κj .

Proof of Lemma 6.6: The ε-accuracy bound follows from applying
preconditioned Chebyshev to solveA1 similarly to Spielman and
Teng’s Theorem 5.5 [ST06], and the running time bounds follow
from Lemma 6.8 when ` = 1. �

6.3 Optimizing the Chain for Depth
Lemma 6.6 shows that the algorithm’s performance is determined

by the settings of κi’s and mi’s; however, as we will be using
Lemma 6.2, the number of edges mi is essentially dictated by our
choice of κi. We now show that if we terminate chain earlier, i.e.
adjusting the dimension Ad to roughly O(m1/3 log ε−1), we can
obtain good parallel performance. As a first attempt, we will set
κi’s uniformly:

Lemma 6.9 For any fixed θ > 0, if we construct a preconditioner
chain using Lemma 6.2 setting λ to some proper constant greater
than 21, η = λ and extending the sequence until md ≤ m1/3−δ

for some δ depending on λ, we get a solver algorithm that runs
in O(m1/3+θ log(1/ε)) depth and Õ(m log 1/ε) work as λ→∞,
where ε is the accuracy precision of the solution, as defined in the
statement of Theorem 1.1.

PROOF. By Lemma 6.1, we have that mi+1—the number of
edges in level i+ 1—is bounded by

O(mi ·
cPC

logηλ−2η−4λ
) = O(mi ·

cPC

logλ(λ−6)
),

which can be repeatedly apply to give

mi ≤ m ·
(

cPC

logλ(λ−6) n

)i−1

Therefore, when λ > 12, we have that for each i < d,

mi ·
∏
j≤i

√
κ(nj) ≤ m ·

(
cPC

logλ(λ−6) n

)i−1

·
(√

logλ
2
n

)i

= Õ(m) ·
(

cPC

logλ(λ−12)/2 n

)i
≤ Õ(m)

Now consider the term involving md. We have that d is bounded
by
(

2
3

+ δ
)

logm/ log (1
cPC

lognλ(λ−6)). Combining with the κi =

logλ
2

n, we get∏
1≤j≤d

√
κ(nj)

=
(

lognλ
2/2
)(2

3
+δ) logm/ log (c lognλ(λ−6))

= exp

(
log logn

λ2

2
(
2

3
+ δ)

logm

λ(λ− 6) log logn− log cPC

)
≤ exp

(
log logn

λ2

2
(
2

3
+ δ)

logm

λ(λ− 7) log logn

)
(since log cPC ≥ − logn)

= exp

(
logn

λ

λ− 7
(
1

3
+
δ

2
)

)
= O(m(1

3
+ δ

2
) λ
λ−7)

Since md = O(m
1
3
−δ), the total work is bounded by

O(m(1
3

+ δ
2

) λ
λ−7

+ 2
3
−2δ) = O(m1+ 7

λ−7
−δ λ−14

λ−7)

So, setting δ ≥ 7
λ−14

suffices to bound the total work by Õ(m).
And, when δ is set to 7

λ−14
, the total parallel running time is

bounded by the number of times the last layer is called∏
j

√
κ(nj) ≤O(m

(1
3

+ 1
2(λ−14)

) λ
λ−7)

≤O(m
1
3

+ 7
λ−14

+ λ
2(λ−14)(λ−7))

≤O(m
1
3

+ 14
λ−14) when λ ≥ 21

Setting λ arbitrarily large suffices to give O(m1/3+θ) depth.

To match the promised bounds in Theorem 1.1, we improve the
performance by reducing the exponent on the logn term in the total
work from λ2 to some large fixed constant while letting total depth
still approach O(m1/3+θ).

Proof of Theorem 1.1: Consider setting λ = 13 and η ≥ λ. Then,

ηλ− 2η − 4λ ≥ η(λ− 6) ≥ 7

13
ηλ

We use c4 to denote this constant of 7
13

, namely c4 satisfies

cPC/ logηk−2η−4λ n ≤ cPC/ logc4ηλ n

We can then pick a constant threshold L and set κi for all i ≤ L as
follows:

κ1 = logλ
2

n, κ2 = log(2c4)λ2

n, · · · , κi = log(2c4)i−1λ2

n

To solve AL, we apply Lemma 6.9, which is analogous to setting
AL, . . . , Ad uniformly. The depth required in constructing these
preconditioners is O(md +

∑L
j=1(2c4)j−1λ2), plus O(md) for

computing the inverse at the last level—for a total of O(md) =

O(m1/3).
As for work, the total work is bounded by∑

i≤d

mi

∏
1≤j≤i

√
κj +

∏
1≤j≤d

√
κjm

2
d

=
∑
i<L

mi

∏
1≤j≤i

√
κj +

 ∏
1≤j<L

√
κj

 ·
√κj∑

i≥L

mi

∏
L≤j≤i

√
κj +m2

d

∏
L≤j≤d

√
κj


≤
∑
i<L

mi

∏
1≤j≤i

√
κj +

 ∏
1≤j<L

√
κj

mL
√
κL

=
∑
i≤L

mi

∏
1≤j≤i

√
κj

≤
∑
i≤L

m∏
j<i κ

c4
i

∏
1≤j≤i

√
κj

= m
∑
i≤L

√
κ1

∏
2≤j≤i

√
κ2c4
j−1∏

j<i κ
c4
i

= mL
√
κ1

The first inequality follows from the fact that the exponent of
logn in κL can be arbitrarily large, and then applying Lemma 6.9
to the solves after level L. The fact that mi+1 ≤ mi · O(1/κc4i)
follows from Lemma 6.2.

Since L is a constant,
∏

1≤j≤L ∈ O(polylogn), so the total
depth is still bounded by O(m1/3+θ) by Lemma 6.9. �

7. CONCLUSION
We presented a near linear-work parallel algorithm for construct-

ing graph decompositions with strong-diameter guarantees and par-
allel algorithms for constructing 2O(

√
logn log logn)-stretch spanning

trees and O(logO(1) n)-stretch ultra-sparse subgraphs. The ultra-
sparse subgraphs were shown to be useful in the design of a near
linear-work parallel SDD solver. By plugging our result into pre-
vious frameworks, we obtained improved parallel algorithms for
several problems on graphs.

We leave open the design of a (near) linear-work parallel algo-
rithm for the construction of a low-stretch tree with polylogarith-
mic stretch. We also feel that the design of (near) work-efficient
O(logO(1) n)-depth SDD solver is a very interesting problem that
will probably require the development of new techniques.

Acknowledgments. This work is partially supported by the Na-
tional Science Foundation under grant numbers CCF-1018463, CCF-
1018188, and CCF-1016799, by an Alfred P. Sloan Fellowship, and
by generous gifts from IBM, Intel, and Microsoft.

References
[ABN08] Ittai Abraham, Yair Bartal, and Ofer Neiman. Nearly tight low

stretch spanning trees. In FOCS, pages 781–790, 2008.
[AKPW95] Noga Alon, Richard M. Karp, David Peleg, and Douglas West.

A graph-theoretic game and its application to the k-server prob-
lem. SIAM J. Comput., 24(1):78–100, 1995.

[Awe85] Baruch Awerbuch. Complexity of network synchronization. J.
Assoc. Comput. Mach., 32(4):804–823, 1985.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Came-
bridge University Press, 2004.

[Chv79] V. Chvátal. The tail of the hypergeometric distribution. Discrete
Mathematics, 25(3):285–287, 1979.

[Coh93] E. Cohen. Fast algorithms for constructing t-spanners and paths
with stretch t. In Proceedings of the 1993 IEEE 34th Annual
Foundations of Computer Science, pages 648–658, Washington,
DC, USA, 1993. IEEE Computer Society.

[Coh00] Edith Cohen. Polylog-time and near-linear work approximation
scheme for undirected shortest paths. J. ACM, 47(1):132–166,
2000.

[DS08] Samuel I. Daitch and Daniel A. Spielman. Faster approximate
lossy generalized flow via interior point algorithms. CoRR,
abs/0803.0988, 2008.

[EEST05] Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-
Hua Teng. Lower-stretch spanning trees. In Proceedings of the
thirty-seventh annual ACM symposium on Theory of computing,
pages 494–503, New York, NY, USA, 2005. ACM Press.

[Gre96] Keith Gremban. Combinatorial Preconditioners for Sparse,
Symmetric, Diagonally Dominant Linear Systems. PhD thesis,
Carnegie Mellon University, Pittsburgh, October 1996. CMU
CS Tech Report CMU-CS-96-123.

[GVL96] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns
Hopkins Press, 3rd edition, 1996.

[Hoe63] Wassily Hoeffding. Probability Inequalities for Sums of
Bounded Random Variables. Journal of the American Sta-
tistical Association, 58(301):13–30, 1963.

[JáJ92] Joseph JáJá. An Introduction to Parallel Algorithms. Addison-
Wesley, 1992.

[KM07] Ioannis Koutis and Gary L. Miller. A linear work, O(n1/6)
time, parallel algorithm for solving planar laplacians. In SODA,
pages 1002–1011, 2007.

[KMP10] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching
optimality for solving SDD linear systems. In FOCS, pages
235–244, 2010.

[Kou07] Ioannis Koutis. Combinatorial and algebraic algorithms for
optimal multilevel algorithms. PhD thesis, Carnegie Mellon

University, Pittsburgh, May 2007. CMU CS Tech Report CMU-
CS-07-131.

[KS97] Philip N. Klein and Sairam Subramanian. A randomized par-
allel algorithm for single-source shortest paths. J. Algorithms,
25(2):205–220, 1997.

[Lei92] F. Thomson Leighton. Introduction to Parallel Algorithms and
Architectures: Array, Trees, Hypercubes. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1992.

[MR89] Gary L. Miller and John H. Reif. Parallel tree contraction part
1: Fundamentals. In Silvio Micali, editor, Randomness and
Computation, pages 47–72. JAI Press, Greenwich, Connecticut,
1989. Vol. 5.

[Ren01] James Renegar. A mathematical view of interior-point methods
in convex optimization. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2001.

[Ska09] Matthew Skala. Hypergeometric tail inequalities: ending the
insanity, 2009.

[Spi10] Daniel A. Spielman. Algorithms, Graph Theory, and Linear
Equations in Laplacian Matrices. In Proceedings of the Inter-
national Congress of Mathematicians, 2010.

[SS08] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification
by effective resistances. In STOC, pages 563–568, 2008.

[ST03] Daniel A. Spielman and Shang-Hua Teng. Solving sparse, sym-
metric, diagonally-dominant linear systems in time O(m1.31).
In FOCS, pages 416–427, 2003.

[ST06] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time
algorithms for preconditioning and solving symmetric, diago-
nally dominant linear systems. CoRR, abs/cs/0607105, 2006.

[Ten10] Shang-Hua Teng. The Laplacian Paradigm: Emerging Algo-
rithms for Massive Graphs. In Theory and Applications of
Models of Computation, pages 2–14, 2010.

[Ye97] Y. Ye. Interior point algorithms: theory and analysis. Wiley,
1997.

APPENDIX
A. UTILITY LEMMAS AND THEOREMS

Lemma A.1 (Hypergeometric Tailbound) Let H be a hypergeo-
metric random variable denoting the number of red balls found in
sample of n drawn from a total ofN balls of whichM are red. Then,
if µ = E[H] = nM/N , then

Pr[H ≥ 2µ] ≤ e−µ/4

PROOF. We apply the following theorem of Hoeffding [Chv79,
Hoe63, Ska09]. For any t > 0,

Pr[H ≥ µ+ tn] ≤
((p

p+ t

)p+t(1− p
1− p− t

)1−p−t
)n

,

where p = µ/n. Using t = p, we have

Pr[H ≥ 2µ] ≤
((p

2p

)2p(1− p
1− 2p

)1−2p
)n

≤
(
e−p ln 4

(
1 +

p

1− 2p

)1−2p
)n

≤
(
e−p ln 4 · ep

)n
≤ e−

1
4
pn

	Introduction
	Preliminaries and Notation
	Overview of Our Techniques
	Parallel Low-Diameter Decomposition
	Parallel Low-Stretch Spanning Trees and Subgraphs
	Low-Stretch Spanning Trees
	Low-Stretch Spanning Subgraphs
	The First Improvement
	The Second Improvement

	Parallel SDD Solver
	Parallel Construction of Solver Chain
	Parallel Performance of Solver Chain
	Optimizing the Chain for Depth

	Conclusion
	Utility Lemmas and Theorems

