
Parallel Probabilistic Tree Embeddings, k-Median, and
Buy-at-Bulk Network Design

Guy E. Blelloch Anupam Gupta Kanat Tangwongsan
Carnegie Mellon University

{guyb, anupamg, ktangwon}@cs.cmu.edu

ABSTRACT
This paper presents parallel algorithms for embedding an arbitrary
n-point metric space into a distribution of dominating trees with
O(logn) expected stretch. Such embedding has proved useful
in the design of many approximation algorithms in the sequen-
tial setting. We give a parallel algorithm that runs in O(n2 logn)
work and O(log2 n) depth—these bounds are independent of ∆ =
maxx,y d(x,y)

minx6=y d(x,y)
, the ratio of the largest to smallest distance. Moreover,

when ∆ is exponentially bounded (∆ ≤ 2O(n)), our algorithm can
be improved to O(n2) work and O(log2 n) depth.

Using these results, we give an RNC O(log k)-approximation
algorithm for k-median and an RNC O(logn)-approximation for
buy-at-bulk network design. The k-median algorithm is the first
RNC algorithm with non-trivial guarantees for arbitrary values of
k, and the buy-at-bulk result is the first parallel algorithm for the
problem.

Categories and Subject Descriptors: F.2 [Theory of Computa-
tion]: Analysis of Algorithms and Problem Complexity

General Terms: Algorithms, Theory

Keywords: Parallel algorithms, probabilistic tree embedding, k-
median, buy-at-bulk network design

1. INTRODUCTION
The idea of embedding a finite metric into a distribution of “simpler”
metrics has proved to be a useful and versatile technique in the
algorithmic study of metric spaces, with far-reaching consequences
to understanding finite metrics and developing approximation algo-
rithms. An important line of work in this pursuit is concerned with
embedding a finite metric space into a distribution of dominating
trees [Bar98] that minimizes distance distortion: Given an n-point
metric space (X, d), the goal is to find a distribution D of trees to
minimize β such that

(1) Non-contracting: for all T ∈ D, d(x, y) ≤ dT (x, y) for all
x, y ∈ X; and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’12, June 25–27, 2012, Pittsburgh, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1213-4/12/06 ...$10.00.

(2) Small Distortion: ET∼D[dT (x, y)] ≤ β · d(x, y) for all
x, y ∈ X ,

where dT (·, ·) denotes the distance in the tree T , and ET∼D draws
a tree T from the distribution D. The series work on this prob-
lem (e.g., [Bar98, Bar96, AKPW95]) culminated in the result of
Fakcharoenphol, Rao, and Talwar (FRT) [FRT04], who gave an ele-
gant optimal algorithm with β = O(logn). This has proved to be
instrumental in many approximation algorithms (see, e.g., [FRT04]
and the references therein). For example, the first polylogarithmic
approximation algorithm for the k-median problem was given using
this embedding technique. Remarkably, all these algorithms only
require pairwise expected stretch, so their approximation guaran-
tees are expected approximation bounds and the technique is only
applicable to problems whose objectives are linear in the distances.

In this paper, motivated by getting a parallel algorithm for the
k-median problem, we consider the problem of computing such
tree embeddings in parallel. None of the previous low-depth paral-
lel approximation algorithms for k-median worked for all ranges
of k; all previous algorithms giving non-trivial approximations ei-
ther had more than polylogarithmic depth, or could only handle k
smaller than polylog(n) [BT10]. Using the parallel tree-embedding
results in this paper, we give parallel approximation algorithms for
k-median. Moreover, we use these embeddings to give parallel ap-
proximation algorithms for the buy-at-bulk network design problem.

A crucial design constraint is to ensure that the parallel work of
our algorithms remains close to that of the sequential counterparts
(aka. work efficiency) while achieving small, preferably polyloga-
rithmic, depth (parallel time). Work efficiency is important since
it allows an algorithm to be applied efficiently to both a modest
number of processors (one being the most modest) and a larger
number. Even with a larger number of processors, work-efficient
algorithms limit the amount of resources used and hence presumably
the cost of the computation (e.g. in terms of the energy used, or the
rental cost of a machine in the “cloud”). We will be less concerned
with polylogarithmic factors in the depth since such a measure is
typically not robust across models.

Our Results. We give a parallel algorithm to embed any n-point
metric into a distribution of hierarchically well-separated trees
(HSTs)1 with O(n2 logn) (randomized) work and O(log2 n) depth
that offers the same distance-preserving guarantees as FRT [FRT04].
When the ratio between the largest and smallest distance ∆ =
maxx,y d(x,y)

minx6=y d(x,y)
is exponentially bounded (i.e., ∆ ≤ 2O(n)), our algo-

rithm can be improved to O(n2) work and O(log2 n) depth. The
main challenge arises in ensuring the depth of the computation is
polylogarithmic even when the resulting tree is highly imbalanced—
the FRT algorithm, as stated, works level by level, and a naïve
1A definition of HSTs is given in Section 2.

implementation incurs O(log ∆) depth, which is undesirable when
∆ is more than polynomial in n. Our contribution lies in recog-
nizing an alternative view of the FRT algorithm and developing an
efficient algorithm to exploit it. Our analysis also implies probabilis-
tic embeddings into trees without Steiner nodes of height O(logn)
whp. (though not HSTs).

Using these embedding algorithms, in Section 4, we give an RNC
O(log k)-approximation for k-median—see Theorem 4.4. This
is the first RNC algorithm that gives non-trivial approximation for
arbitrary values of k. (There is an RNC algorithm that give a (5+ε)-
approximation for k ≤ polylog(n) [BT10].) Furthermore, the al-
gorithm is work-efficient relative to previously described sequential
techniques. It remains an intriguing open problem to give an RNC
algorithm for k-median with a constant-factor approximation.

Finally, in Section 5, we give an RNC O(logn)-approximation
algorithm for buy-at-bulk network design—see Theorem 5.1. This
algorithm for buy-at-bulk network design is within an O(logn)
factor of being work efficient if the input contains all-pairs shortest
paths distances of the graph. All our algorithms are randomized and
all our guarantees are expected approximation bounds.

2. PRELIMINARIES AND NOTATION
Throughout the paper, let [n] = {1, 2, . . . , n}. For alphabet Σ and
a sequence α ∈ Σ∗, we denote by |α| the length of α and by αi (or
alternatively α(i)) the i-th element of α. Given sequences α and β,
we say that α v β if α is a prefix of β. Furthermore, we denote by
LCP(α, β) the longest common prefix of α and β. Let prefix(α, i)
be the first i elements of α.

Let G = (V,E) be a graph with edge lengths ` : E → R+. Let
dG(u, v) or simply d(u, v) denote the shortest-path distance in G
between u and v. We write V (G) and E(G) to mean the vertex set
and the edge set of G. We represent graphs and trees in a form of
adjacency array, where the vertices and the edges are each stored
contiguously, and each vertex has a pointer to a contiguous array
of pointers to its incident edges. A hierarchically well-separated
tree (HST) is a rooted tree where the edges from each node to its
children have the same length, and the lengths of consecutive edges
on any root-leaf path decrease by some factor α > 1.

An event happens with high probability (whp.) if it happens with
probability at least 1 − n−Ω(1). We analyze the algorithms in the
PRAM model and use both the EREW (Exclusive Read Exclusive
Write) and CRCW (Concurrent Read Concurrent Write), assuming
for the CRCW that an arbitrary value is written. By work, we mean
the total operation count, and by depth, we mean the longest chain
of dependencies (i.e., parallel time).

A trie (also known as a prefix tree) is an ordered tree where each
tree edge is marked with a symbol from (constant-sized) Σ and a
node v corresponds to the sequence given by the symbols on the root-
to-v path, in that order. In this work, we only deal with non-empty
sequences s1, s2, . . . , sk of equal length. The trie corresponding
to these sequences is one in which there are k leaf nodes, each
corresponding uniquely to one of the sequences. If these sequences
have long common prefixes, its trie has many long paths (i.e., a line
of non-branching nodes). This can be compressed. Contracting
all non-root degree-2 nodes by concatenating the symbols on the
incident edges results in a Patricia tree (also known as a radix
tree), in which by definition, all internal node except the root has
degree at least 3. Using a (multiway-)Cartesian tree algorithm of
Blelloch and Shun and a known reduction [BS11], the Patricia tree
of a lexicographically ordered sequence of strings s1, . . . , sn can
be constructed in O(n) work and O(log2 n) depth assuming the
following as input: (1) the sequences si’s themselves, (2) |si| the

length of each si for i ∈ [n], and (3) |LCP(si, si+1)| the length of
the longest common prefix between si and si+1 for i ∈ [n− 1].

We also rely on the following primitives on trees. Given a com-
mutative semigroup (U, ∗), and a rooted tree T (not necessarily
balanced) where every node v ∈ V (T) is tagged with a value
val(v) ∈ U , there is an algorithm treeAgg that computes the
aggregate value for each subtree of T (i.e., for each v ∈ V (T),
compute the result of applying ∗ to all val(·) inside that subtree) in
O(n) work and O(logn) depth, assuming the binary operator ∗ is
a constant-time operation [MRK88, JáJ92]. In the same work-depth
bounds, the lowest common ancestor (LCA) of a pair of vertices
u and v, denoted by LCA(u, v), can be determined (via the tree
primitive just mentioned or otherwise) [SV88, BV93].

Finally, we recall a useful fact about random permutations:

Lemma 2.1 ([Sei92]) Let π : [n]→ [n] be a random permutation
on [n], and let yi = min{π(j) : j = 1, . . . , i}. Then, yi’s form a
non-increasing sequence. Moreover, the number of times yi’s change
to a smaller value is expected O(logn). In fact, it is O(logn) with
high probability.

3. PARALLEL FRT EMBEDDING
An input instance is a finite metric space (X, d), where |X| = n
and the symmetric distance function d(·, ·) is specified by an n-by-n
matrix, normalized so that for all x 6= y, 1 ≤ d(x, y) ≤ ∆, where
∆ is a power of two (i.e., ∆ = 2δ). As is standard, we assume that
d(x, x) = 0.

In the sequential case, FRT [FRT04] developed an elegant al-
gorithm that preserves the distances up to O(logn) in expecta-
tion. Their algorithm can be described as a top-down recursive
low-diameter decomposition (LDD) of the metric. In broad strokes,
the algorithm is given a metric space (X, d) with diameter ∆ and
it applies an LDD procedure to partition the points into clusters
of diameter roughly ∆/2, then each cluster into smaller clusters
diameter of ∆/4, etc. This construction produces a laminar family
of clusters that we connect up based on set-inclusion, yielding a so-
called FRT tree. The algorithm gives an optimal distance-preserving
guarantee and as described it can be implemented in O(n2 logn)

sequential time if ∆ ≤ 2O(n).
While the low-diameter decomposition step is readily paralleliz-

able, there is potentially a long chain of dependencies in the tree
construction: for each i, determining the clusters with diameter
2i requires knowing the clusters of diameter 2i+1. This O(log ∆)
chain is undesirable for large ∆. Our algorithms get rid of this
dependence. The main theorem of this section is the following:

Theorem 3.1 (Parallel FRT Embedding) There is a randomized
algorithm that on input a finite metric space (X, d) with |X| = n,
produces a tree T such that for all x, y ∈ X , d(x, y) ≤ dT (x, y)
(with probability 1) and E [dT (x, y)] ≤ O(logn) d(x, y). The al-
gorithm runs in O(n2 logn) work and O(log2 n) depth whp. Fur-
thermore, if ∆ ≤ 2O(n), the algorithm can be improved to run in
O(n2) work and O(log2 n) depth whp.

Remarks. When ∆ ≤ 2O(n), the improvement comes from replac-
ing comparison-based sort with parallel radix sort; we describe this
in more detail in the algorithm’s description.

3.1 FRT Tree as Sequences
To achieve this parallelization, we take a different, though equivalent,
view of the FRT algorithm. The main conceptual difference is as
follows. Instead of adopting a cluster-centric view which maintains

Algorithm 3.1 Implicit simultaneous low-diameter decompositions

1. Pick a permutation π : X → [n] uniformly at random.
2. Pick β ∈ [1, 2] with the distribution fβ(x) = 1/(x ln 2).

3. For all v ∈ X , compute the partition sequence χ(v)
π,β .

a set of clusters that are refined over time, we explore a point-centric
view which tracks the movement of each point across clusters but
without explicitly representing the clusters. This view can also be
seen as representing an FRT tree by the root-to-leaf paths of all
external nodes (corresponding to points in the metric space). We
formalize this idea in the following definition:

Definition 3.2 ((π, β)-Partition Sequence) For v ∈ X , the parti-
tion sequence of v with respect to a permutation π : X → [n] and
a parameter β > 0, denoted by χ(v)

π,β , is a length-(δ + 1) sequence

such that χ(v)
π,β(0) = 1 and

χ
(v)
π,β(i) = min{π(w) | w ∈ X, d(v, w) ≤ β · 2δ−i−1}

for i = 1, . . . , δ = log2 ∆.

For each combination of π and β, each χ(v)
π,β is the sequence of

the lowest-numbered vertices (where the numbering is given by the
random permutation π) that the node v can “see” as it reduces its
range-of-vision geometrically from ∆ down to 0. Thus, these num-
bers keep increasing from 1 = minw∈X π(w) to π(v). Hence, the
first step in generating an FRT tree is to pick a random permutation
π on the nodes and a value β, and compute the partition sequence
χ

(v)
β,π for each node v ∈ X , as shown in Algorithm 3.1. These

partition sequences encode all the information we need to construct
an FRT tree T , which can be done as follows:

Vertices: For i = 0, . . . , δ, letLi = {prefix(χ
(v)
π,β , i+1) | v ∈ X}

be the i-th level in the tree. The vertices of T are exactly
V (T) = ∪iLi, where each v ∈ X corresponds to the node
identified by the sequence χ(v)

π,β .
Edges: Edges only go between Li and Li+1 for i ≥ 1. In particu-

lar, a node x ∈ Li has an edge with length 2δ−i to y ∈ Li+1

if x v y.

This construction yields a tree because edges are between adjacent
levels and defined by the subsequence relation. Note that the full
χ

(v)
π,β are the leaves of T .
We will show in the following two lemmas distance-preserving

properties of the tree T . The first lemma shows that dT is an upper
bound for d; the second shows that dT preserves the distance d up
to a O(logn) factor in expectation.

Lemma 3.3 For all u, v ∈ X , for all β, π,

d(u, v) ≤ dT (χ
(u)
π,β , χ

(v)
π,β).

PROOF. The proof is straightforward and is given for complete-
ness. Let u, v ∈ X such that u 6= v be given. These nodes are
“separated” at a vertex y that is the longest common prefix (LCP)
of χ(u) and χ(v). Let i∗ = |LCP(χ(u), χ(v))|. This means there is
a vertex w at distance at most β · 2δ−i

∗−1 from both u and v, so
d(u, v) ≤ 2δ−i

∗+1. On the other hand, both χ(u) and χ(v) are in
the subtree rooted at y; therefore, dT (χ(u), χ(v)) ≥ 2 · 2δ−i

∗
≥

2δ−i
∗+1, which concludes the proof.

Lemma 3.4 For all u, v ∈ X ,

E
[
dT (χ

(u)
π,β , χ

(v)
π,β)

]
≤ O(logn) · d(u, v).

This process is equivalent to that of [FRT04]. Here, we adapt
their proof to our setting. Before beginning the analysis, we state
a useful fact: Because β is picked from [1, 2] with the probability
density function (pdf.) 1

x ln 2
, we have

Pr
[
∃i ≥ 1, β · 2i−1 ∈ [x, x+ dx)

]
≤ dx

x ln 2
. (3.1)

PROOF. Let distinct u, v ∈ X be given. In the tree constructed,
χ(u) and χ(v) will be separated at the least common ancestor (LCA)
of the two nodes. At the split point, the two sequences differ for the
first time. For the analysis, we will need two definitions: First, we
say that χ(u) and χ(v) are split by w ∈ X if π(w) is the smaller
of the two values at the first position where χ(u) and χ(v) differ.
Second, we say that w ∈ X is a lead of a vertex u if π(w) =
min{π(z) | d(u, z) ≤ d(u,w)} (i.e., w has the smallest π number
among points in the ball of radius d(u,w) centered at u).

The crux of the argument is in noticing that u and v are necessarily
split by some w, and when this happens, the following must be true:

1. There exists a level i such that d(w, u) ≤ β · 2δ−i−1 <
d(w, v) —we assume without loss of generality that d(w, u) ≤
d(w, v).

2. w is a lead of u or v. (Note thatw must be a lead since it is the
smaller of the two values at the position where the sequences
first differ.)

For each node w, define contribw to be the distance in the tree
between χ(u) and χ(v) assuming w splits u and v. The following
claim bounds contribw conditioned on w being a lead of u or v:

Claim 3.5 For any w 6= u, v,

E [contribw | w is a lead of u or v] ≤ 8d(u, v).

Using this claim, which will be proved below, we can express
E
[
dT (χ(u), χ(v))

]
as follows: Because we know dT (χ(u), χ(v)) ≤∑

w contribw, we have

E
[
dT (χ(u), χ(v))

]
≤

∑
w

E [contribw | w is a lead of u, v]

× Pr [w is a lead of u, v]

≤ 8d(u, v) E

[∑
w

1{w is a lead of u,v}

]
.

To complete the proof, we know from Lemma 2.1 that the num-
ber of vertices that could be a lead of u or v is O(logn) in ex-

pectation. Therefore, we conclude that E
[
dT (χ(u), χ(v))

]
≤

O(logn)d(u, v).

PROOF OF CLAIM 3.5. Assume WLOG that d(w, u) < d(w, v).
By (3.1), for a particular x between d(w, u) and d(w, v), we know

Pr
[
∃i ≥ 1, β · 2δ−i−1 ∈ [x, x+ dx)

]
≤ dx

x ln 2
.

Furthermore, if u is separated from v at level i, then

contribw ≤ 2 ·
∑
i′≥i

2δ−i
′

= 2δ−i+2 ≤ 8β2δ−i−1.

This means that the claimed expectation is at most∫ d(w,v)

d(w,u)

1

x ln 2
8x dx ≤ 8(d(w, v)− d(w, u)) ≤ 8d(u, v),

which concludes the proof.

3.2 A Simple Parallel FRT Algorithm
We now present a naïve parallelization of the above construction.
This naïve version still has the log ∆ dependence. Notice that a
parallel algorithm with such parameters can be inferred directly
from [FRT04]; however, the presentation here is instructive: it relies
on computing partition sequences and building the tree using them,
which will be useful for the improved parallel algorithm in the
section that follows.

Lemma 3.6 Given π and β, each χ(v)
π,β can be computed in (worst-

case) O((n+ log ∆) logn) work and O(logn) depth.

PROOF. Let v ∈ X , together with π and β, be given. We
can sort the vertices by the distance from v so that v = vn and
d(v, v1) ≥ d(v, v2) ≥ · · · ≥ d(v, vn) = 0, where v1, . . . , vn are
distinct vertices. This requiresO(n logn) work andO(logn) depth.
Then, we compute `i = min{π(vj) | j ≥ i} for i = 1, . . . , n.
This quantity indicates that by going to distance at least d(v, vi), the
point v could reach a number as low as `i. This step requires O(n)
work and O(logn) depth (using a prefix computation). Finally, for
each k = 1, . . . , δ, use a binary search to determine the smallest
index i (i.e., largest distance) such that d(v, vi) ≤ β · 2δ−k−1—
and χ(v)(k) is simply `i. There are O(log ∆) such k values, each
independently running in O(logn) depth and work, so this last
step requires O(log ∆ logn) work and O(logn) depth, which com-
pletes the proof.

Using this algorithm, we can compute all partition sequences in-
dependently in parallel, leading to a total of O(n(n+ log ∆) logn)

work and O(logn) depth for computing χ(v) for all v ∈ X . The
next step is to derive an embedding tree from these partition se-
quences. From the description in the previous section, to com-
pute the set of level-i vertices, we examine all length-i prefixes
prefix(χ

(v)
π,β , i) for v ∈ X and remove duplicates. The edges are

easy to derive from the description. Each level i can be done
in expected O(i2) work and O(logn) depth, so in total we need
O(log3 ∆) work and O(logn log ∆) depth in expectation to build
the tree from these sequences, proving the following theorem:

Theorem 3.7 There is an algorithm simpleParFRT that com-
putes an FRT tree in expectedO(n2 logn+n log ∆ logn+log3 ∆)
work and O(logn log ∆) depth.

Notice that the naïve algorithm has ∆ dependence in both work
and depth. While this is fine for small ∆, the depth term can
be undesirable for large ∆. For example, when ∆ is 2O(n), the
algorithm has O(n logn) depth. In the section that follows, we
present an algorithm that removes this ∆ dependence.

3.3 An Improved Algorithm
The simple algorithm in the preceding section had a log ∆ depen-
dence in both work and depth. We now show the power of the
partition sequence view and derive an algorithm whose work and
depth bounds are independent of ∆. Moreover, the algorithm per-
forms the same amount of work as the sequential algorithm.

At first glance, the log ∆ dependence in the generation of parti-
tion sequences in our previous algorithm seems necessary, and the

reason is simple: the length of each partition sequence is O(log ∆).
To remove this dependence, we work with a different representation
of partition sequences, one which has length at most n in the worst
case but with high probability, has length O(logn). This repre-
sentation is based on the observation that any partition sequence is
non-decreasing and its entries are numbers between 1 and n. Conse-
quently, the sequence cannot change values more than n times and
we only have to remember where it changes values. Furthermore,
by Lemma 2.1, we know that this sequence changes values at most
O(logn) times whp. This inspires the following definition:

Definition 3.8 (Compressed Partition Sequence) For v ∈ X , the
compressed partition sequence of v, denoted by σ(v)

π,β , is the unique
sequence 〈(si, pi)〉ki=1 such that 1 = s1 < · · · < sk < sk+1 =
δ + 1, p1 < p2 < · · · < pk, and for all i ≤ k and j ∈
{si, si + 1, . . . , si+1 − 1}, χ(v)

π,β(j) = pi, where χ(v)
π,β is the parti-

tion sequence of v.

In words, if we view π as assigning priority values to X , then
the compressed partition sequence of v tracks the distance scales
at which the lowest-valued vertex within reach from v changes.
As an example, at distances β · 2δ−s1+1, β · 2δ−(s1+1)+1, . . . , β ·
2δ−(s2−1)+1, the lowest-valued vertex within reach of v is p1—and
β · 2δ−s2+1 is the first distance scale at which p1 cannot be reached
and p2 > p1 becomes the new lowest-valued node. The following
lemma shows how to efficiently compute the compressed partition
sequence of a given vertex.

Lemma 3.9 Given π and β, each compressed partition sequence
σ

(v)
π,β can be computed in (worst-case)O(n logn) work andO(logn)

depth. Furthermore, if ∆ ≤ 2O(n), this can be improved to O(n)
work and O(logn) depth whp.

PROOF. The idea is similar to that of the partition sequence,
except for how we derive the sequence at the end. Let v ∈ X ,
together with π and β, be given. Sort the vertices by the distance
from v so that v = vn and d(v, v1) ≥ d(v, v2) ≥ · · · ≥ d(v, vn),
where v1, . . . , vn are distinct vertices. This has O(n logn) work
and O(logn) depth—or, if ∆ ≤ 2O(n), this can be done in O(n)
work and O(logn) depth since the distance scales then can be
identified by numbers between 0 and O(n), which can be effi-
ciently sorted using parallel radix sort [RR89]. Again, compute
`i = min{π(vj) | j ≥ i} for i = 1, . . . , n. Furthermore, let
bi = max{j ≥ 1 | β · 2δ−j−1 ≥ d(v, vi)} for all i = 1, . . . , n.
This index bi represents the smallest distance scale that v can still
see vi. Then, we compute ρi = min{`j | bj = bi}. Because
the bi’s are non-decreasing, computing ρi’s amounts to identify-
ing where bi’s change values and performing a prefix computation.
Thus, the sequences `i’s, bi’s, and ρi’s can be computed in O(n)
work and O(logn) depth.

To derive the compressed partition sequence, we look for all
indices i such that ρi−1 6= ρi and bi−1 6= bi—these are precisely
the distance scales at which the current lowest-numbered vertex
becomes unreachable from v. These indicies can be found in O(n)
work andO(1) depth, and using standard techniques involving prefix
sums, we put them next to each other in the desired format.

We will now construct an FRT tree from these compressed parti-
tion sequences. Notice that to keep the work term independent of
log ∆, we cannot, for example, explicitly write out all the nodes.
The FRT tree has to be in a specific “compressed” format for the
construction to be efficient. For this reason, we will store the re-
sulting FRT tree in a compressed format. A compacted FRT tree is

obtained by contracting all degree-2 internal nodes of an FRT tree,
so that every internal node except for the root has degree at least 3
(a single parent and at least 2 children). By adding the weights of
merged edges, the compacting preserves the distance between every
pair of leaves. Equivalently, an FRT tree as described earlier is in
fact a trie with the partition sequences as its input—and a compacted
FRT tree is a Patricia (or radix) tree on these partition sequences.

Our task is therefore to construct a Patricia tree given compressed
partition sequences. As discussed in Section 2, the Patricia tree
of a lexicographically ordered sequence of strings s1, . . . , sn can
be constructed in O(n) work and O(log2 n) depth if we have the
following as input: (1) |si| the length of each si for i ∈ [n], and (2)
LCP(si, si+1) the length of the longest common prefix between si
and si+1 for i ∈ [n− 1]. These sequences can be lexicographically
ordered in no more than O(n log2 n) work2 and O(log2 n) depth
whp. and the LCP between all adjacent pairs can be computed in
O(n2) work and O(logn) depth. Combining this with the Patricia
tree algorithm [BS11] gives the promised bounds, concluding the
proof of Theorem 3.1.

3.4 FRT Tree Without Steiner Vertices
Some applications call for a tree embedding solution that consists
of only the original input vertices. To this end, we describe how
to convert a compacted FRT tree from the previous section into a
tree that contains no Steiner vertices. As a byproduct, the resulting
non-Steiner tree has O(logn) depth with high probability.

Theorem 3.10 There is an algorithm FRTNoSteiner running in
O(n2 logn) work and O(log2 n) depth whp. that on input an n-
point metric space (X, d), produces a tree T such that (1) V (T) =
X; (2) T has O(logn) depth whp.; and (3) for all x, y ∈ X ,
d(x, y) ≤ dT (x, y) and E [dT (x, y)] ≤ O(logn) d(x, y). Further-
more, the bounds can be improved to O(n2) work and O(log2 n)

depth whp. if ∆ ≤ 2O(n).

We begin by recalling that each leaf of an FRT tree corresponds
to a node in the original metric space, so there is a bijection f :
Lδ → X . Now consider an FRT tree T on which we will perform
the following transformation: (1) obtain T ′ by multiply all the edge
lengths of T by 2, (2) for each node x ∈ V (T ′), label it with
label(x) = min{π(f(y)) | y ∈ leaves(T ′x)}, where leaves(T ′x)
is the set of leaf nodes in the subtree of T ′ rooted at x, and (3)
construct T ′′ from T ′ by setting an edge to length 0 if the endpoints
are given the same label—but retaining the length otherwise. The
following lemma bounds the depth of the resulting tree T ′′ (the
proof appears in the appendix).

Lemma 3.11 The depth of T ′′ is O(logn) with high probability.

Several things are clear from this transformation: First, for all
u, v ∈ X , d(u, v) ≤ dT ′(χ(u), χ(v)) and

E
[
dT ′(χ

(u), χ(v))
]
≤ O(logn) d(u, v)

(of course, with worse constants than dT). Second, T ′′ is no longer
an HST, but dT ′′ is a lowerbound on dT ′ (i.e., for all u, v ∈ X ,
dT ′′(χ

(u), χ(v)) ≤ dT ′(χ(u), χ(v))). Therefore, to prove distance-
preserving guarantees similar to Theorem 3.1, we only have to show
that dT ′′ dominates d (the proof appears in Appendix A).

Lemma 3.12 For all u, v ∈ X , d(u, v) ≤ dT ′′(χ(u), χ(v)).
2The length of the compressed partition sequence of v is upperbounded by
the number of times the sequence yi = min{π(vj) | n − 1 ≥ j ≥ i}
changes value. By Lemma 2.1, this is at most O(logn) whp.

On a compacted FRT tree, this transformation is easy to perform.
First, we identify all leaves with their corresponding original nodes.
Computing the label for all nodes can be done in O(n) work and
O(logn) depth using treeAgg (Section 2), which is a variant of
tree contraction. Finally, we just have to contract zero-length edges,
which again, can be done in O(n) work and O(logn) depth using
standard tree-contraction techniques [JáJ92]. Notice that we only
have to compute the minimum on the nodes of a compacted tree,
because the label (i.e., the minimum value) never changes unless
the tree branches.

4. THE K-MEDIAN PROBLEM
The k-median problem is a standard clustering problem, which has
received considerable attention from various research communities.
The input to this problem is a set of vertices V ⊆ X , where (X, d)
is a (finite) metric space, and the goal is to find a set of at most k
centers FS ⊆ V that minimizes the objective

Φ(FS) =
∑
j∈V

d(j, FS).

Since we will be working with multiple metric spaces, we will write
ΦD(FS) =

∑
j∈V D(j, FS) to emphasize which distance function

is being used. In the sequential setting, several approximation algo-
rithms are known, including O(1)-approximations (see [AGK+04]
and the references therein) and approximation via tree embed-
dings [Bar98, FRT04]. In the parallel setting, these algorithms seem
hard to parallelize directly: to our knowledge, the only RNC algo-
rithm for k-median gives a (5 + ε)-approximation but only achieves
polylogarithmic depth when k is at most polylog(n) [BT10].

Our goal is to obtain an O(log k)-approximation that has poly-
logarithmic depth for all k and has essentially the same work bound
as the sequential counterpart. The basic idea is to apply bottom-up
dynamic programming to solve k-median on a tree, like in Bartal’s
paper [Bar98]. Later, we describe a sampling procedure to improve
the approximation guarantee from O(logn) to O(log k). While
dynamic programming was relatively straightforward to apply in
the sequential setting, more care is needed in the parallel case: the
height of a compacted FRT tree can be large, and since the dynamic
program essentially considers tree vertices level by level, the total
depth could be much larger than polylog(n).

Rather than working with compacted FRT trees, we will be using
FRT trees that contain no Steiner node, constructed by the algorithm
FRTNoSteiner in Theorem 3.10. This type of trees is shown to
have the same distance-preserving properties as an FRT tree but
has O(logn) depth with high probability. Alternatively, we give
an algorithm that reduces the depth of a compacted FRT tree to
O(logn); this construction, which assumes the HST property, is
presented in Appendix B and may be of independent interest.

4.1 Solving k-Median on Trees
Our second ingredient is a parallel algorithm for solving k-median
when the distance metric is the shortest-path distance in a (shallow)
tree. For this, we will parallelize a dynamic programming (DP)
algorithm of Tamir [Tam96], which we now sketch. Tamir presented
a O(kn2) algorithm for a slight generalization of k-median on trees,
where in his setting, each node i ∈ V is associated with a cost
ci if it were to be chosen; every node i also comes equipped with
a nondecreasing function fi; and the goal becomes to find a set
A ⊆ V of size at most k to minimize∑

i∈A

ci +
∑
j∈V

min
i∈A

fj(d(vj , vi)).

This generalization (which also generalizes the facility-location
problem) provides a convenient way of taking care of Steiner nodes
in an FRT tree. For our purpose, these fi’s will simply be the identity
function3 x 7→ x, and ci’s are set so that it is 0 if i is a real node
from the original instance and∞ if i is a Steiner node (to prevent it
from being chosen).

Tamir’s algorithm is a DP which solves the problem exactly, but
it requires the input tree to be binary. While Tamir also gave an
algorithm that converts any tree into a binary tree, his approach can
significantly increase the depth of the tree. For our setting, we need
a different algorithm that ensures not only that the tree is binary
but also that the depth does not grow substantially. The simplest
solution is to replace each node that has outdegree d with a perfect
binary tree with d leaves; this can increase the depth of the tree from
O(logn) to O(log2 n) in the worst case. But this increase can be
avoided. We give a parallel algorithm based on the Shannon-Fano
code construction [Sha48], as detailed in Section 4.2 below, which
outputs a binary tree whose depth is an additive logn larger than
the original depth. Then, we set edge lengths as follows: The new
edges will have length 0 except for the edges incident to the original
vi’s: the parent edge incident to vi will inherit the edge length
from viv. Also, the added nodes have cost∞. As a result of this
transformation, the depth of the new tree is at most O(logn) and
the number of nodes will at most double.

The main body of Tamir’s algorithm begins by producing for
each node v a sequence of vertices that orders all vertices by their
distances from v with ties appropriately broken. His algorithm
for generating these sequences are readily parallelizable because
the sequence for a vertex v involves merging the sequences of its
children in a manner similar to the merge step in merge sort. The
work for this step, as originally analyzed, is O(n2). Each merge can
be done in O(logn) depth and there are at most O(logn) levels;
this step has depth O(log2 n).

4.2 Making Trees Binary
Given a tree T with n nodes and depth h but of arbitrary fanout,
we give a construction that yields a tree with depth O(h+ logn).
In contrast, the simpler alternative that replaces each node that has
fanout d with a perfect binary tree with d leaves produces a tree
with depth O(h logn) in the worst case. Instead, our algorithm
makes use of a well-known idea, which goes back to a construction
of Shannon and Fano [Sha48]: For each original tree node v with
children v1, . . . , vk, we assign to vi the “probability”

pi =
|V (Tvi)|
|V (Tv)| ,

where Tu denotes the subtree of T rooted at u. Shannon and Fano’s
result implies that there is a binary tree whose external nodes are
exactly these v1, . . . , vk, and the path from v to vi in this binary
tree has length at most 1 + log(1/pi). Applying this construction
on all nodes with degree more than 2 gives the following lemma:

Lemma 4.1 Given a tree T with n nodes and depth h but of arbi-
trary fanout, there is an algorithm treeBinarize producing a
binary tree with depth at most h+ logn.

PROOF. Let w be a leaf node in T and consider the path from
the root node to w. Suppose on this path, the subtrees have sizes
n = n1 > n2 > · · · > nd′ = 1, where d′ ≤ h. Applying the
aforementioned construction, this path expands to a path of length

3In the weighted case, we will use fi(x) = wi · x to reflect the weight on
node i.

at most

1 +

d′−1∑
i=1

(
1 + log(1

pi
)
)

= 1 +

d′−1∑
i=1

(
1 + log(ni

ni+1
)
)

≤ d′ + logn

≤ h+ logn,

which proves the lemma.

This construction is also directly parallelizable as all that is
needed is sorting the probabilities in decreasing order (so that
p1 ≥ p2 ≥ · · · pk), computing the cumulative probabilities (i.e.,
Pi =

∑
i′≤i pi), finding the point where the cumulative probability

splits in (roughly) half, and recursively applying the algorithm on
the two sides. Since each call involves a sort and a prefix computa-
tion, and the total number of children is O(n), the transformation
on the whole tree will take O(n logn) work and O(log2 n) depth.

4.3 Paralellizing the DP Step
Armed with this, the actual DP is straightforward to parallelize.
Tamir’s algorithm maintains two tables F and G, both indexed by
a tuple (i, q, r) where i ∈ [n] represents a node, q ≤ k counts the
number of centers inside the subtree rooted at i, and r indicates
roughly the distance from i to the closest selected center outside
of the subtree rooted at i. As such, for each i and q, there can be
at most n different values for r. Now Tamir’s DP is amendable to
parallelization because the rules of the DP compute an entry using
only the values of its immediate children. Further, each rule is
essentially taking the minimum over a combination of parameters
and can be parallelized using standard algorithms for finding the
minimum and prefix sums. Therefore, we can compute the table
entries for each level of the tree and move on to a higher level. It
is easy to show that each level can be accomplished in O(logn)
depth, and as analyzed in Tamir’s paper, the total work is bounded
by O(kn2).

4.4 Parallel Successive Sampling
Our algorithm thus far gives an O(logn)-approximation on input
consisting of n points. To improve it to O(log k), we devise a paral-
lel version of Mettu and Plaxton’s successive sampling (shown in Al-
gorithm 4.1) [MP04]. We then describe how to apply it to our prob-
lem. Since the parallel version produces an identical output to the
sequential one, guarantees about the output follow directly from the
results of Mettu and Plaxton. Specifically, they showed that there are
suitable settings of α and β such that by usingK = max{k, logn},
the algorithm SuccSamplingα,β(V,K) runs for O(log(n/K))
rounds and produces Q of size at most O(K · log(n/K)) with the
following properties:

Theorem 4.2 (Mettu and Plaxton [MP04]) There exists an abso-
lute constant CSS such that if Q = SuccSampling (V,K), then
with high probability, Q satisfies Φ(Q) ≤ CSS · Φ(OPTk), where
OPTk is an optimal k-median solution on the instance V .

In other words, the theorem says that Q is a bicriteria approx-
imation which uses O(K log(n/K)) centers and obtains a CSS-
approximation to k-median. To obtain a parallel implementation
of successive sampling (Algorithm 4.1), we will make steps 1–3
parallel. We have the following runtime bounds:

Lemma 4.3 For |V | = n and K ≤ n, SuccSampling(V,K)
has O(nK) work and O(log2 n) depth whp.

Algorithm 4.1 SuccSamplingα,β(V,K)—successive sampling

Let U0 = V , i = 0
while (|Ui| > αK)

1. Sample from Ui u.a.r. (with replacement) bαKc times—call
the chosen points Si.

2. Compute the smallest ri such that |BUi(Si, ri)| ≥ β · |Ui|
and let Ci = BUi(Si, ri), where BU (S, r) = {w ∈ U |
d(w, S) ≤ r}.

3. Let Ui+1 = Ui \ Ci and i = i+ 1.
Output Q = S0 ∪ S1 ∪ · · · ∪ Si−1 ∪ Ui

PROOF. First, by the choice of Ci, we remove at least a β frac-
tion of Ui and since α and β are constants, we know that the number
of iterations of the while loop is O(log(n/K)). Now step 1 of the
algorithm can be done in O(nK) work and O(1) depth (assum-
ing concurrent writes). To perform Step 2, first, we compute for
each p ∈ Ui, the distance to the nearest point in Si. This takes
O(|Ui|K) work and O(logK) depth. Then, using a linear-work
selection algorithm, we can find the set Ci and ri in O(|Ui|) work
and O(log |Ui|) depth. Since each time |Ui| shrinks by a factor β,
the total work is O(nK) and the total depth is O(log2 n).

Piecing together the components developed so far, we obtain an
expected O(log k)-approximation. The following theorem summa-
rizes our main result for the k-median problem:

Theorem 4.4 For k ≥ logn, there is a randomized algorithm
for the k-median problem that produces an expected O(log k)-
approximate solution running in O(nk+k(k log(n

k
))2)≤ O(kn2)

work and O(log2 n) depth whp. For k < logn, the problem admits
an expectedO(1)-approximation withO(n logn+k2 log5 n) work
and O(log2 n) depth whp.

Here is a proof sketch, see Appendix A.1 for more details: we
first apply Algorithm 4.1 to get the set Q (in O(nK) work and
O(log2 n) depth, Lemma 4.3). Then, we “snap” the clients to their
closest centers in Q (paying at most CSS Φ(OPTk) for this), and
depending on the range of k, either use an existing parallel k-median
algorithm for k < logn [BT10] or use the FRT-based algorithm
on these “moved” clients to get the O(log q)-approximation (in
O(kq2) work and O(log2 q) depth, where q = O(K log(n/K)),
because we are running the algorithm only on O(K log(n/K))
points). Note that we now need a version of the k-median algorithm
on trees (Section 4.1) where clients also have weights, but this is
easy to do (by changing the fi’s to reflect the weights).

5. BUY-AT-BULK NETWORK DESIGN
In this section, we explore another application of our parallel prob-
abilistic tree embedding algorithm. Let G = (V,E) be an undi-
rected graph with n nodes; edge lengths ` : E → R+; a set of
k demand pairs {demsi,ti}ki=1; and a set of cables, where cable
of type i has capacity ui and costs ci per unit length. The goal
of the problem is to find the cheapest set of cables that satisfy the
capacity requirements and connect each pair of demands by a path.
Awerbuch and Azar [AA97] gave a O(logn)-approximation algor-
thim in the sequential setting. Their algorithm essentially finds an
embedding of the shortest-path metric on G into a distribution of
trees with no Steiner nodes, a property which they exploit when
assigning each tree edge to a path in the input graph. For an edge
with net demand dem, the algorithm chooses the cable type that

minimizes ciddem/uie. This is shown to be an expected O(logn)-
approximation. From a closer inspection, their algorithm can be
parallelized by developing parallel algorithms for the following:

1. Given a graph G with edge lengths ` : E(G) → R+, com-
pute a dominating tree T with no Steiner node such that T
O(logn)-probabilistically approximate d in expectation.

2. For each (u, v) ∈ E(T), derive the shortest path between u
and v in G.

3. For each e ∈ E(T), compute the net demand that uses this
edge, i.e., fe =

∑
i:e∈PT (si,ti)

demsi,ti , where PT (u, v)
denotes the unique path between u and v in T .

We consider these in turn. First, the shortest-path metric d can
be computed using a standard all-pair shortest paths algorithm in
O(n3 logn) work and O(log2 n) depth. With this, we apply the
algorithm in Section 3.4 to produce a dominating tree T in which
dT O(logn)-probabilistically approximates d. Furthermore, for
each tree edge e = (u, v), the shortest path between u and v can be
obtained from the calculation performed to derive d at no extra cost.

Next we describe how to calculate the net demand on every tree
edge. We give a simple parallel algorithm using the treeAgg
primitive discussed in Section 2. As a first step, we identify for
each pair of demands its least common ancestor (LCA), where we
let LCA(u, v) be the LCA of u and v. This can be done in O(n)
work and O(logn) depth for each pair. Thus, we can compute the
LCA for all demand pairs in O(n + k logn) work and O(logn)
depth. As input to the second round, we maintain a variable up(w)
for each node w of the tree. Then, for every demand pair demu,v ,
we add to both up(u) and up(v) the amount of demu,v—and to
up(LCA(u, v)) the negative amount −2demu,v . As such, the sum
of all the values up inside a subtree rooted at u is the amount of
“upward” flow on the edge out of u toward the root. This is also the
net demand on this edge. Therefore, the demand fe’s for all e ∈
E(T) can be computed inO(n+k logn) work andO(logn) depth.
Finally, mapping these back to G and figuring out the cable type
(i.e., computing mini ciddem/uie) are straightforward and no more
expensive than computing the all-pair shortest paths. Hence, we have
the following theorem with the cost broken down by components:

Theorem 5.1 If the all-pairs shortest path problem on G can be
solved in WAPSP work and DAPSP depth and an FRT tree with no
steiner node can be computed in WFRT work and DFRT, then there is
a randomized algorithm for the buy-at-bulk network design problem
with k demand pairs on an n-node graph that runs in O(WAPSP +
WFRT + n + k logn) work and O(DAPSP + DFRT + logn) depth
and produces an expected O(logn)-approximation.

This means that using the standardO(n3 logn)-work,O(log2 n)-
depth algorithm for the all-pairs shortest path computation, and us-
ing our FRT algorithm, we have an expectedO(logn)-approximation
for the buy-at-bulk network design problem that runs inO(n3 logn)
work and O(log2 n) depth whp. If, on the other hand, the input
already contains the all-pairs shortest paths distances, our algorithm
runs in O(n2 logn) work and and O(log2 n) depth whp.

6. CONCLUSION
We gave an efficient parallel algorithm for tree embedding with
O(logn) expected stretch. Our contribution is in making these
bounds independent of the ratio of the smallest to largest distance, by
recognizing an alternative view of the FRT algorithm and developing
an efficient algorithm to exploit it. Using the embedding algorithms,
we developed the first RNC O(log k)-approximation algorithm for
k-median and an RNC O(logn)-approximation for buy-at-bulk
network design.

Acknowledgments
This work is partially supported by the National Science Founda-
tion under grant numbers CCF-0964474, CCF-1016799, and CCF-
1018188 and by generous gifts from IBM and Intel Labs Academic
Research Office for Parallel Algorithms for Non-Numeric Comput-
ing. We thank the SPAA reviewers for their comments that helped
improve this paper.

References
[AA97] Baruch Awerbuch and Yossi Azar. Buy-at-bulk network

design. In Proceedings of the 38thFOCS, pages 542–
547, 1997.

[AGK+04] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam
Meyerson, Kamesh Munagala, and Vinayaka Pandit.
Local search heuristics for k-median and facility lo-
cation problems. SIAM J. Comput., 33(3):544–562,
2004.

[AKPW95] Noga Alon, Richard M. Karp, David Peleg, and Dou-
glas West. A graph-theoretic game and its application
to the k-server problem. SIAM J. Comput., 24(1):78–
100, 1995.

[Bar96] Yair Bartal. Probabilistic approximations of metric
spaces and its algorithmic applications. In Proceedings
of the 37thFOCS, pages 184–193, 1996.

[Bar98] Yair Bartal. On approximating arbitrary metrics by tree
metrics. In Proceedings of the 30th ACM Symposium
on the Theory of Computing (STOC), pages 161–168,
1998.

[BS11] Guy E. Blelloch and Julian Shun. A simple parallel
cartesian tree algorithm and its application to suffix
tree construction. In ALENEX, pages 48–58, 2011.

[BT10] Guy E. Blelloch and Kanat Tangwongsan. Parallel ap-
proximation algorithms for facility-location problems.
In SPAA, pages 315–324, 2010.

[BV93] Omer Berkman and Uzi Vishkin. Recursive star-tree
parallel data structure. SIAM J. Comput., 22(2):221–
242, 1993.

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar.
A tight bound on approximating arbitrary metrics by
tree metrics. J. Comput. System Sci., 69(3):485–497,
2004.

[JáJ92] Joseph JáJá. An Introduction to Parallel Algorithms.
Addison-Wesley, 1992.

[MP04] Ramgopal R. Mettu and C. Greg Plaxton. Optimal time
bounds for approximate clustering. Machine Learning,
56(1-3):35–60, 2004.

[MRK88] Gary L. Miller, Vijaya Ramachandran, and Erich
Kaltofen. Efficient parallel evaluation of straight-
line code and arithmetic circuits. SIAM J. Comput.,
17(4):687–695, 1988.

[RR89] Sanguthevar Rajasekaran and John H. Reif. Optimal
and sublogarithmic time randomized parallel sorting
algorithms. SIAM J. Comput., 18(3):594–607, 1989.

[Sei92] Raimund Seidel. Backwards analysis of randomized
geometric algorithms. In Trends in Discrete and Com-
putational Geometry, volume 10 of Algorithms and
Combinatorics, pages 37–68. Springer-Verlag, 1992.

[Sha48] C. E. Shannon. A Mathematical Theory of Communi-
cation. Bell System Technical Journal, 27, 1948.

[SV88] Baruch Schieber and Uzi Vishkin. On finding lowest
common ancestors: Simplification and parallelization.
SIAM J. Comput., 17(6):1253–1262, 1988.

[Tam96] Arie Tamir. AnO(pn2) algorithm for the p-median and
related problems on tree graphs. Operations Research
Letters, 19(2):59–64, 1996.

APPENDIX

A. VARIOUS PROOFS
PROOF OF LEMMA 3.12. Let u 6= v ∈ X be given and let

y = LCP(χ(u), χ(v)). In T ′′ (also T and T ′), y is the lowest
common ancestor of χ(u) and χ(v). Let i∗ = |LCP(χ(u), χ(v))|.
This means there is a vertex w at distance at most β · 2δ−i

∗−1 from
both u and v, so d(u, v) ≤ 2δ−i

∗+1. Now let a (resp. b) be the
child of y such that Ta (resp. Tb) contains χ(u) (resp. χ(v)). So
then, we argue that dT ′′(χ(u), χ(v)) ≥ 2 · 2δ−i

∗
because label(y)

must differ from at least one of the labels label(a) and label(b)—
and such non-zero edges have length 2δ−i

∗+1 since we doubled its
length in Step (1). This establishes the stated bound.

PROOF OF LEMMA 3.11. The depth of T ′′ is upperbounded by
the length of the longest compressed partition sequence. Consider
a vertex v ∈ X and let v1, . . . , vn−1 ∈ X be such that d(v, v1) >
d(v, v2) > · · · > d(v, vn−1) > 0. The length of the compressed
partition sequence of v is upperbounded by the number of times the
sequence yi = min{π(vj) | n − 1 ≥ j ≥ i} changes value. By
Lemma 2.1, this is at most O(logn) whp. Taking union bounds
gives the desired lemma.

A.1 Piecing Together the k-median Algorithm
A.1.1 Case I: k ≥ log n:

Let Q = {q1, . . . , qK} = SuccSampling(V,K), where K =
max{k, logn} and ϕ : V → Q be the mapping that sends each
v ∈ V to the closest point in Q (breaking ties arbitrarily). Thus,
ϕ−1(q1), ϕ−1(q2), . . . , ϕ−1(qK) form a collection ofK non-intersecting
clusters that partition V . For i = 1, . . . ,K, we define w(qi) =
|ϕ−1(qi)|. We prove a lemma that relates a solution’s cost in Q to
the cost in the original space (V, d).

Lemma A.1 Let A ⊆ Q ⊆ V be a set of k centers satisfying

K∑
i=1

w(qi) · d(qi, A) ≤ β · min
X⊆Q
|X|≤k

K∑
i=1

w(qi) · d(qi, X)

for some β ≥ 1. Then,

Φ(A) =
∑
x∈V

d(x,A) ≤ O(β · cSS) · Φ(OPTk),

where OPTk, as defined earlier, is an optimal k-median solution on
V .

PROOF. For convenience, let

λ =
∑
x∈V

d(x,Q) =
∑
x∈V

d(x, ϕ(x)),

and so λ ≤ cSS · Φ(OPTk). We establish the following:

∑
x∈V

d(x,A) ≤ λ+

K∑
i=1

w(qi) · d(qi, A)

≤ λ+ β · min
X⊆Q
|X|≤k

K∑
i=1

w(qi) · d(qi, X)

≤ λ+ β

K∑
i=1

w(qi) · d(qi, ϕ(OPTk))

≤ λ+ 2β

K∑
i=1

w(qi) · d(qi,OPTk)

≤ λ+ 2β

K∑
i=1

∑
x∈ϕ−1(qi)

(
d(qi, x) + d(x,OPTk)

)
≤ λ+ 2βλ+ 2βΦ(OPTk)

= O(β · cSS) · Φ(OPTk),

which proves the lemma.

By this lemma, the fact that the k-median on tree gives aO(log |Q|)-
approximation, and the observation that |Q| ≤ k2 (because k ≥
logn), we have that our approximation is O(log k).

A.1.2 Case II: k < log n:

We run successive sampling as before, but this time, we will use
the parallel local-search algorithm [BT10] instead. On input con-
sisting of n points, the BT algorithm has O(k2n2 logn) work and
O(log2 n) depth. Since k < logn, we haveK = logn and the suc-
cessive sampling algorithm would give |Q| ≤ log2 n. This means
we have an algorithm with total work O(n logn+ k2 log5 n) and
depth O(log2 n).

B. TREE TRIMMING FOR K-MEDIAN
Another way to control the height of the tree is by taking advantage
of a cruder solution (which can be computed inexpensively) to prune
the tree. The first observation is that if A ⊆ V is a ρ-approximation
to k-center, then A is a ρn-approximation to k-median. Using a
parallel k-center algorithm [BT10], we can find a 2-approximation
to k-center in O(n log2 n) work and O(log2 n) depth. This means
that we can compute a value β such that if OPT is an optimal k-
median solution, then Φ(OPT) ≤ β ≤ 2n · Φ(OPT).

Following this observation, two things are immediate when we
consider an uncompacted FRT tree:

1. If we are aiming for aC ·logn approximation, no clients could
go to distance more than than C · logn · Φ(OPT) ≤ C · nβ.
This shows twe can remove the top portion of the tree where
the edge lengths are more than Cnβ.

2. If a tree edge is shorter than τ = β
8n2 , we could set its

length to 0 without significantly affecting the solution’s qual-
ity. These 0-length edges can be contracted together. Because
an FRT tree as constructed in Theorem 3.1 is a 2-HST, it
can be shown that if T ′ is obtained from an FRT tree T
by the contraction process described, then for all x 6= y,
dT (x, y) ≤ dT ′(x, y) + 4τ .

Both transformations can be performed on compacted trees in
O(n) work and O(logn) depth, and the resulting tree will have

height at most O(log(8n3)) = O(logn). Furthermore, if A ⊆ V
is any k-median solution, then

Φd(A) ≤ ΦdT (A) =
∑
x∈V

dT (x,A)

≤
∑
x∈V

(
dT ′(x,A) + 4t

)
≤ ΦdT ′ (A) + n · β

2n2

≤ ΦdT ′ (A) + Φd(OPT).

	Introduction
	Preliminaries and Notation
	Parallel FRT Embedding
	FRT Tree as Sequences
	A Simple Parallel FRT Algorithm
	An Improved Algorithm
	FRT Tree Without Steiner Vertices

	The k-Median Problem
	Solving k-Median on Trees
	Making Trees Binary
	Paralellizing the DP Step
	Parallel Successive Sampling

	Buy-at-Bulk Network Design
	Conclusion
	Various Proofs
	Piecing Together the k-median Algorithm
	Case I: k logn:
	Case II: k < logn:

	Tree Trimming for k-Median

