
Faster and Simpler Width-Independent Parallel Algorithms
for Positive Semidefinite Programming

Richard Peng Kanat Tangwongsan
Carnegie Mellon University

{yangp, ktangwon}@cs.cmu.edu

ABSTRACT
This paper studies the problem of finding a (1+ε)-approximate
solution to positive semidefinite programs. These are semidef-
inite programs in which all matrices in the constraints and
objective are positive semidefinite and all scalars are non-
negative. At FOCS’11, Jain and Yao gave an NC algorithm
that requires O(1

ε13
log13 m logn) iterations on input n con-

straint matrices of dimension m-by-m, where each iteration
performs at least Ω(mω) work since it involves computing
the spectral decomposition.

We present a simpler NC parallel algorithm that on in-
put with n constraint matrices, requires O(1

ε4
log4 n log(1

ε
))

iterations, each of which involves only simple matrix oper-
ations and computing the trace of the product of a matrix
exponential and a positive semidefinite matrix. Further,
given a positive SDP in a factorized form, the total work
of our algorithm is nearly-linear in the number of non-zero
entries in the factorization. Our algorithm can be viewed
as a generalization of Young’s algorithm and analysis tech-
niques for positive linear programs (Young, FOCS’01) to the
semidefinite programming setting.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Algorithms, Theory

Keywords: Parallel algorithms, semidefinite programming,
covering semidefinite programs, approximation algorithms

1. INTRODUCTION
Semidefinite programming (SDP), alongside linear program-
ming (LP), has been an important tool in approximation
algorithms, optimization, and discrete mathematics. In the
context of approximation algorithms alone, it has emerged
as a key technique which underlies a number of impressive
results that substantially improve the approximation ratios.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’12, June 25–27, 2012, Pittsburgh, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1213-4/12/06 ...$10.00.

In order to solve a semidefinite program, algorithms from the
linear programming literature such as Ellipsoid or interior-
point algorithms [GLS93] can be applied to derive near exact
solutions. But this can be very costly. As a result, finding
efficient approximations to such problems is a critical step
in bringing these results closer to practice.

From a parallel algorithms standpoint, both LPs and SDPs
are P-complete to even approximate to any constant accuracy,
suggesting that it is unlikely that they have a polylogarith-
mic depth algorithm. For linear programs, however, the
special case of positive linear programs, first studied by Luby
and Nisan [LN93], has an algorithm that finds a (1 + ε)-
approximate solution in O(poly(1

ε
logn)) iterations. This

weaker approximation guarantee is still sufficient for approx-
imation algorithms (e.g., solutions to vertex cover and set
cover via randomized rounding), spurring interest in studying
these problems in both sequential and parallel contexts (see,
e.g., [LN93, PST95, GK98, You01, KY07, KY09]).

The importance of problems such as MaxCut and Spars-
est Cut has led to the identification and study of positive
SDPs. The first definition of positive SDPs was due to Klein
and Lu [KL96], who used it to characterize the MaxCut SDP.
The MaxCut SDP can be viewed as a direct generalization of
positive (packing) LPs. More recent work defines the notion
of positive packing SDPs [IPS11], which captures problems
such as MaxCut, sparse PCA, and coloring; and the notion
of covering SDPs [IPS10], which captures the ARV relaxation
of Sparsest Cut among others. The bulk of work in this
area tends to focus on developing fast sequential algorithms
for finding a (1+ε)-approximation, leading to a series of nice
sequential algorithms (e.g., [AHK05, AK07, IPS11, IPS10]).
The iteration count for these algorithms, however, depends
on the so-called “width” parameter of the input program
or some parameter of the spectrum of the input program.
In some instances, the width parameter can be as large as
Ω(n), making it a bottleneck in the depth of direct paral-
lelization. Most recently, Jain and Yao [JY11] studied a
particular class of positive SDPs and gave the first positive
SDP algorithm whose work and depth are independent of the
width parameter (commonly known as width-independent
algorithms).

Our Work. We present a simple algorithm that offers the
same approximation guarantee as [JY11] but has less work-
depth complexity. Each iteration of our algorithm involves
only simple matrix operations and computing the trace of
the product of a matrix exponential and a positive semidef-
inite matrix. Furthermore, our proof only uses elementary

linear-algebraic techniques and the now-standard Golden-
Thompson inequality.

The input consists of an accuracy parameter ε > 0 and
a positive semidefinite program (PSDP) in the following
standard primal form:

Minimize C •Y
Subject to: Ai •Y ≥ bi for i = 1, . . . , n

Y < 0,
(1.1)

where the matrices C,A1, . . . ,An are m-by-m symmetric
positive semidefinite matrices, • denotes the pointwise dot
product between matrices (see Section 2), and the scalars
b1, . . . , bn are non-negative reals. This is a subclass of SDPs
where the matrices and scalars are “positive” in their respec-
tive settings. We also make the now-standard assumption
that the SDP has strong duality. Our main result is as
follows:

Theorem 1.1 (Main Theorem) Given a primal positive
SDP involving m ×m matrices with n constraints and an
accuracy parameter ε > 0, there is an algorithm approxPSDP

that produces a (1 + ε)-approximation in O(1
ε4

log4 n log(1
ε
))

iterations, where each iteration involves computing matrix
sums and a special primitive that computes exp(Φ) •A in
the case when Φ and A are both positive semidefinite.

The theorem quantifies the cost of our algorithm in terms
of the number of iterations. The work and depth bounds
implied by this theorem vary with the format of the input
and how the matrix exponential is computed in each iter-
ation. As we will discuss in Section 4, with input given in
a suitable form, our algorithm runs in nearly-linear work
and polylogarithmic depth. For comparison, the algorithm
given in [JY11] requires O(1

ε13
log13 m log n) iterations, each

of which involves computing spectral decompositions using
least Ω(mω) work.

Recently, in an independent work, Jain and Yao [JY12]
gave a similar algorithm for positive SDPs that is also based
on Young’s algorithm. Their algorithm solves a class of
SDPs which contains both packing and diagonal covering
constraints. Since matrix packing conditions between diago-
nal matrices are equivalent to point-wise conditions of the
diagonal entries, these constraints are closer to a general-
ization of positive covering LP constraints. We believe that
removing this restriction on diagonal packing matrices would
greatly widen the class of problems included in this class of
SDPs and discuss possibilities in this direction in Section 5.

1.1 Overview
All the parallel positive SDP algorithms to date can be
seen as generalizations of previous works on positive linear
programs (positive LPs). In the positive LPs literature, Luby
and Nisan (LN) were the first to give a parallel algorithm for
approximately solving a positive LP [LN93]. This algorithm
provided the foundations for the algorithm given in [JY11],
which like the LN algorithm, also works directly on the
primal program. Using the dual as guide, the update step
is intricate as their analysis is based on carefully analyzing
the eigenspaces of a particular matrix before and after each
update. Each of these iterations involves computing the
spectral decomposition.

Our algorithm follows a different approach, based on the
algorithm of Young [You01] for positive LPs. At the core of

our algorithm is an algorithm for solving the decision version
of the dual program. We derive this core routine by generaliz-
ing the algorithm and analysis techniques of Young [You01],
using the matrix multiplicative weights update (MMWU)
mechanism in place of Young’s “soft” min and max. This
leads to a simple algorithm: besides standard operations
on (sparse) matrix, the only special primitive needed is the
matrix dot product exp(Φ) •A, where Φ and A are both
positive semidefinite.

More specifically, our algorithm works with normalized pri-
mal/dual programs shown in Figure 1.1. This is without loss
of generality because any input program can be transformed
into the normalized form by “dividing through” by C (see
Appendix A). We solve a normalized SDP by resorting to
an algorithm for its decision version and binary search. In
particular, we design an algorithm with the property that
given a goal value ô, either find a dual solution x ∈ R+

n to
(1.2-D) with objective at least (1− ε)ô, or a primal solution
Y to (1.2-P) with objective at most ô. Furthermore, by
scaling the Ai’s, it suffices to only consider the case where
ô = 1. With this algorithm, the optimization version can
be solved by binary searching on the objective a total of at
most O(log(n

ε
)) iterations.

Intuitions. For intuition about packing SDPs and the ma-
trix multiplicative weights update method for finding approx-
imate solutions, a useful analogy of the decision problem
is that of packing a (fractional) amount of ellipses into the
unit ball. Figure 2 provides an example involving 3 matri-
ces (ellipses) in 2 dimensions. Note that A1 and A2 are
axis-aligned, so their sum is also an axis-aligned sum in this
case. In fact, positive linear programs in the broader context
corresponds exactly to the restriction of all ellipsoids being
axis-aligned. In this setting, the algorithm of [You01] can
be viewed as creating a penalty function by weighting the
length of the axises using an exponential function. Then,
ellipsoids with sufficiently small penalty subject to this func-
tion have their weights increased. However, once we allow
general ellipsoids such as A3, the resulting sum will no longer
be axis-aligned. In this setting, a natural extension is to
take the exponential of the semi-major axises of the resulting
ellipsoid instead. As we will see in later sections, the rest
of Young’s technique for achieving width-independence can
also be adapted to this more general setting.

Work and Depth. We now discuss the work and depth
bounds of our algorithm. The main cost of each iteration
of our algorithm comes from computing the dot product
between a matrix exponential and a PSD matrix. Like in
the sequential setting [AHK05, AK07], we need to compute
for each iteration the product Ai • exp(Φ), where Φ is some
PSD matrix. The cost of our algorithm therefore depends
on how the input is specified. When the input is given
prefactored—that is, the m-by-m matrices Ai’s are given as
Ai = QiQ

>
i and the matrix C−1/2 is given, then Theorem 4.1

can be used to compute matrix exponential in O(1
ε3

(m +

q) log n log q log(1/ε)) work and O(1
ε

log n log q log(1/ε)) depth,
where q is the number of nonzero entries across Qi’s and
C−1/2. This is because the matrix Φ that we exponentiate
has ‖Φ‖2 ≤ O(1

ε
logn), as shown in Lemma 3.8. Therefore,

as a corollary to the main theorem, we have the following
cost bounds:

Primal Dual

Minimize Tr [Y]
Subject to: A′i •Y ≥ 1 for i = 1, . . . , n

Y < 0

Maximize 1>x
Subject to:

∑n
i=1 xiA

′
i 4 I
x ≥ 0.

(1.2)

Figure 1. Normalized primal/dual positive SDPs. The symbol I represents the identity matrix.

A1 A2 A3 A1 + A2
1
2
A1 + 1

2
A2 + A3

Figure 2. An instance of a packing SDP in 2 dimensions.

Corollary 1.2 The algorithm approxPSDP has in Õ(n+m+

q) work and O(logO(1)(n+m+ q)) depth.

If, however, the input program is not given in this form,
we can add a preprocessing step that factors each Ai into
QiQ

>
i since Ai is positive semidefinite. In general, this

preprocessing requires at most O(m4) work and O(log3m)
depth using standard parallel QR factorization [JáJ92]. Fur-
thermore, these matrices often have certain structure that
makes them easier to factor. Similarly, we can factor and
invert C with the same cost bound, and can do better if it
also has specialized structure.

2. BACKGROUND AND NOTATION
We review notation and facts that will prove useful later
in the paper. Throughout this paper, we use the notation

Õ(f(n)) to mean O(f(n) polylog(f(n))).

Matrices and Positive Semidefiniteness. Unless oth-
erwise stated, we will deal with real symmetric matrices
in Rm×m. A symmetric matrix A is positive semidefinite,
denoted by A < 0 or 0 4 A, if for all z ∈ Rm, z>Az ≥ 0.
Equivalently, this means that all eigenvalues of A are non-
negative and the matrix A can be written as

A =
∑
i

λiviv
>
i ,

where v1,v2, . . . ,vm are the eigenvectors of A with eigen-
values λ1 ≥ · · · ≥ λm respectively. We will use λ1(A),
λ2(A), . . . , λm(A) to represent the eigenvalues of A in de-
creasing order and also use λmax(A) to denote λ1(A). Notice
that positive semidefiniteness induces a partial ordering on
matrices. We write A 4 B if B−A < 0.

The trace of a matrix A, denoted Tr [A], is the sum of the
matrix’s diagonal entries: Tr [A] =

∑
iAi,i. Alternatively,

the trace of a matrix can be expressed as the sum of its
eigenvalues, so Tr [A] =

∑
i λi(A). Furthermore, we define

A •B =
∑
i,j

Ai,jBi,j = Tr [AB] .

It follows that A is positive semidefinite if and only if A•B ≥
0 for all PSD B.

Matrix Exponential. Given an m×m symmetric positive
semidefinite matrix A and a function f : R→ R, we define

f(A) =

m∑
i=1

f(λi)viv
>
i ,

where, again, vi is the eigenvector corresponding to the
eigenvalue λi. It is not difficult to check that for exp(A),
this definition coincides with exp(A) =

∑
i≥0

1
i!

Ai.

Our algorithm relies on a matrix multiplicative weights
(MMW) algorithm, which can be summarized as follows. For

a fixed ε0 ≤ 1
2

and W(1) = I, we play a “game” a number of
times, where in iteration t = 1, 2, . . . , the following steps are
performed:

1. Produce a probability matrix P(t) = W(t)/Tr
[
W(t)

]
;

2. Incur a gain matrix M(t); and
3. Update the weight matrix as

W(t+1) = exp(ε0

∑
t′≤t

M(t′)).

Like in the standard setting of multiplicative weight al-
gorithms, the gain matrix is chosen by an external party,
possibly adversarially. In our algorithm, the gain matrix is
chosen to reflect the step we make in the iteration. Arora
and Kale [AK07] shows that the MMW algorithm has the
following guarantees (restated for our setting):

Theorem 2.1 ([AK07]) For ε0 ≤ 1
2

, if M(t)’s are all PSD

and M(t) 4 I, then after T iterations,

(1 + ε0)

T∑
t=1

M(t) •P(t) ≥ λmax

(
T∑
t=1

M(t)

)
− lnn

ε0
. (2.1)

3. SOLVING POSITIVE SDPS
In this section, we describe a parallel algorithm for solving
positive packing SDPs, inspired by Young’s algorithm for

positive LPs. As described earlier, by using binary search and
appropriately scaling the input program, a positive packing
SDP can be solved assuming an algorithm for the following
decision problem:

Decision Problem: Find either an x ∈ R+
n (a

dual solution) such that

‖x‖1 ≥ 1− ε and

n∑
i=1

xiAi 4 I

or a PSD matrix Y (a primal solution) such that

Tr [Y] ≤ 1 and ∀i,Ai •Y ≥ 1.

The following theorem provides a solution to this problem:

Theorem 3.1 Let 0 < ε ≤ 1. There is an algorithm

decisionPSDP that given a positive SDP, in O
(

log3 n
ε4

)
iter-

ations solves the Decision Problem.

Presented in Algorithm 3.1 is an algorithm that satisfies
the theorem. But before we go about proving it, let us take
a closer look at the algorithm. Fix an accuracy parameter
ε > 0. We set K to 1

ε
(1 + lnn). The reason for choosing

this value is technical, but the motivation was so that we
can absorb the lnn term in Theorem 2.1 and account for the
contribution of the starting solution x(0).

The algorithm is a multiplicative weight updates algo-
rithm, which proceeds in rounds. Initially, we work with the

starting solution x
(0)
i = 1

nTr[Ai]
. This solution is chosen to

be small so that
∑
i x

(0)
i Ai 4 I, hence respecting the dual

constraint, and it contains enough mass that subsequent
updates (each update is a multiple of the current solution)
are guaranteed to make rapid progress. In each iteration, we

compute W(t) = exp(Ψ(t−1)), where Ψ(t−1) =
∑
i x

(t−1)
i Ai.

(For some intuitions for the W(t) matrix, we refer the reader
to [AK07, Kal07].)

The next two steps (Steps 3–4) of the algorithm are respon-
sible for identifying which coordinates of x to update. For
starters, it may help to think of them as follows: let P(t) =

W(t)/Tr
[
W(t)

]
—and B(t) be {i ∈ [n] : P(t) •Ai ≤ 1 + ε}.

The actual algorithm discretizes Tr
[
W(t)

]
to ensure certain

monotonicity properties on B(t). As we show later on in
Lemma 3.2, the set B(t) cannot be empty unless the system
is infeasible. The final steps of the algorithm increment each

coordinate i ∈ B(t) of the solution by the amount α · x(t)
i .

The choice of α may seem mysterious at this point; it is

chosen to ensure that (1)
∑
i δ

(t)
i Ai 4 εI and (2) 1>δ(t) ≤ ε.

Intuitively, these bounds prevent us from taking too big a
step from the current solution. At a more technical level, the
first requirement is needed to satisfy the MMW algorithm’s
condition, and the second requirement makes sure when we
cannot overshoot by much when exiting from the while loop.

3.1 Analysis
We will bound the approximation guarantees and analyze
the cost of the algorithm. Before we start, we will need some
notation and definitions. An easy induction gives that the

Algorithm 3.1 Parallel Packing SDP algorithm

Let K = 1
ε
(1 + lnn).

Let x
(0)
i = 1

n·Tr[Ai]
.

Initialize Ψ(0) =
∑n
i=1 x

(0)
i Ai, t = 0.

While ‖x(t)‖1 ≤ K
1. t = t+ 1.
2. Let W(t) = exp(Ψ(t−1)).

3. Let p be such that (1 + ε)p−1 < Tr
[
W(t)

]
≤ (1 + ε)p.

4. Let B(t) = {i ∈ [n] : W(t) •Ai ≤ (1 + ε)p+1}.
5. If B(t) is empty, return Y∗ = W(t)/Tr

[
W(t)

]
as a

primal solution.

6. Let δ(t) = α · x(t−1)
B , where

α = min{ε/‖x(t−1)
B ‖1, ε/(1+10ε)K}.

7. Update x(t) = x(t−1) + δ(t) and Ψ(t) = Ψ(t−1) +∑n
i=1 δ

(t)Ai

Return x∗ = 1
K(1+10ε)

x(t) as a dual solution.

quantities that we track across the iterations of Algorithm
3.1 satisfy the following relationships:

x(t) = x(0) +

t∑
τ=1

δ(τ) (3.1)

W(t) = exp(Ψ(t−1)) (3.2)

P(t) def
= W(t)/Tr

[
W(t)

]
(3.3)

Tr
[
P(t)

]
= Tr

[
W(t)/Tr

[
W(t)

]]
= Tr

[
W(t)

]
/Tr

[
W(t)

]
= 1 (3.4)

M(t) def
=

1

ε

n∑
i=1

δ
(t)
i Ai when t ≥ 1 (3.5)

Ψ(t) =

n∑
i=1

x
(t)
i Ai = ε

t∑
τ=0

M(τ) (3.6)

To bound the approximation guarantees and the cost of
this algorithm, we reason about the spectrum of Ψ(t) and the
`1 norm of the vector x(t) as the algorithm executes. Since
the coordinates of our vector x(t) are always non-negative,
we note that ‖x(t)‖1 = 1>x(t) and we use either notation as

convenient. We begin the analysis by showing that B(t) can
never be empty unless the system is infeasible:

Lemma 3.2 (Feasibility) If there is an iteration t such

that B(t) is empty, then P(t) = W(t)/Tr
[
W(t)

]
is a valid

primal solution with objective value 1. Furthermore, by dual-
ity theory, there exists no dual solution x ∈ Rn+ with objective
value at least 1.

Proof. The fact that B(t) is empty means that for all
i = 1, . . . , n, W(t) • Ai ≥ (1 + ε)p+1. But we know that

Tr
[
W(t)

]
> (1 + ε)p−1, so

P(t) •Ai =
W(t)

Tr [W(t)]
•Ai ≥ (1 + ε)2 ≥ 1,

As noted above, Tr
[
P(t)

]
= 1, so P(t) is a valid primal

solution with objective at most 1, so no dual solution with
objective more than 1 exists.

We proceed to analyze the vector x(t) in the case that
B(t) never becomes empty. The main loop in Algorithm 3.1
terminates only if ‖x(t)‖1 > K, so the solution we produce
satisfies

‖x∗‖1 =
1

(1 + 10ε)K
‖x(t)‖1 ≥

K

(1 + 10ε)K
≥ 1−10ε (3.7)

In order for this to be a dual solution, we still need to show
that it satisfies

∑
i x
∗
iAi 4 I. In particular, it suffices to

show that 1
(1+10ε)K

Ψ(T) 4 I, where T is the final iteration.

Spectrum Bounds. The rest of the analysis hinges on
bounding the spectrum of Ψ(t). More specifically, we prove
the following lemma, which shows that the spectrum of all
intermediate Ψ(t)’s is bounded by (1 +O(ε))K:

Lemma 3.3 (Spectrum Bound) For t = 0, . . . , T , where
T is the final iteration,

Ψ(t) =

n∑
i=1

x
(t)
i Ai 4 (1 + 10ε)KI. (3.8)

We prove this lemma by resorting to properties of the MMW
algorithm (Theorem 2.1), which relates the final spectral
values to the “gain” derived at each intermediate step. For
this, we will show a claim (Claim 3.5) that quantifies the
gain we get in each step as a function of the `1-norm of the
change we make in that step. But first, we analyze the initial
matrix:

Claim 3.4

λmax

(
Ψ(0)

)
= λmax

(
n∑
i=1

x
(0)
i Ai

)
≤ 1

Proof. Our choice of x(0) guarantees that for all i =
1, . . . , n,

x
(0)
i Ai =

1

nTr [Ai]
Ai 4

1

n
I.

Summing across i = 1, . . . , n gives the desired bound.

The following claim bounds the value of M(t)•P(t) in terms
of the `1 norm of the change to the dual solution vector. This
is precisely the quantity we track in Theorem 2.1:

Claim 3.5 For all t = 1, . . . , T ,

M(t) •P(t) ≤ (1 + ε)2

ε
· ‖δ(t)‖1. (3.9)

Proof. Consider that

M(t) •P(t) =
1

ε

(
n∑
i=1

δ
(t)
i Ai

)
•P(t)

=
1

ε

(∑
i∈B

δ
(t)
i Ai •P(t)

)

Every i ∈ B(t) has the property that

Ai •W(t) ≤ (1 + ε)p+1

So then, since

P(t) =
W(t)

Tr [W(t)]
4

W(t)

(1 + ε)p−1
,

we have

Ai •P(t) ≤ (1 + ε)2

and thus

M(t) •P(t) ≤ 1

ε

(∑
i∈B

δ
(t)
i (1 + ε)2

)

≤ (1 + ε)2

ε
‖δ(t)‖1,

which proves the claim.

We can then bound the total `1 norm of the change to the
dual solution by bounding the `1 norm of x(t). Specifically
we show that unless the algorithm terminates at the first
iteration, x(T) does not exceed K + ε in `1 norm.

Claim 3.6 For t = 1, . . . , T ,

‖x(t)‖1 ≤ (1 + ε)K

Proof. Since T is the iteration when the algorithm ter-
minate and for all t ≥ 0, δ(t) ∈ Rn+, we have

‖x(t)‖1 ≤ ‖x(t−1)‖1 + ‖δ(t)‖1
≤ K + ‖δ(t)‖1

By our choice of α, we know that α ≤ ε/‖x(t−1)
B ‖1 and

therefore ‖δ(T)‖1 = α‖x(t−1)
B ‖1 ≤ ε. Substituting this into

the equation above gives ‖x(t)‖1 ≤ K + ε and the claim
follows from K ≥ 1.

We are now ready to complete the proof of the spectrum
bound lemma (Lemma 3.3):

Proof of Lemma 3.3. We can rewrite Ψ(t) as

Ψ(t) =

n∑
i=1

x
(0)
i Ai+

t∑
τ=1

n∑
i=1

δ
(τ)
i Ai =

n∑
i=1

x
(0)
i Ai+ε

t∑
τ=1

M(τ),

so

λmax(Ψ(t)) ≤ λmax

(
n∑
i=1

x
(0)
i Ai

)
+ ε · λmax

(
t∑

τ=1

M(τ)

)
since both sums yield positive semidefinite matrices.

By Claim 3.4, we know that the first term is at most 1. To
bound the second term, we again apply Theorem 2.1, which
we restate below:

(1 + ε)
t∑

τ=1

M(τ) •P(τ) ≥ λmax

(
t∑

τ=1

M(t)

)
− lnn

ε

Rearranging terms, we have

λmax

(
t∑

τ=1

M(τ)

)
≤ (1 + ε)

t∑
τ=1

M(τ) •P(τ) +
lnn

ε
.

We also want to make sure that each M(τ) satisfies M(τ) 4 I.
With an easy induction on t, we can show that (3.8) holds

for all τ ≤ t− 1. This means that for τ = 1, . . . , t, each M(τ)

satisfies

M(τ) =
1

ε

n∑
i=1

δ
(τ)
i Ai

4
α

ε

n∑
i=1

x
(τ)
i Ai

4
ε/(1+10ε)K

ε

n∑
i=1

x
(τ)
i Ai

4
ε/(1+10ε)K

ε
(1 + 10ε)KI 4 I,

since α ≤ ε/(1+10ε)K. It then follow from Claim 3.5 that

ε · λmax

(
t∑

τ=1

M(τ)

)
≤ (1 + ε)

t∑
τ=1

(1 + ε)2 · ‖δ(τ)‖1 + lnn

= lnn+ (1 + ε)3‖x(t)‖1

Where the last step follows from x(t) = x(0) +
∑t
τ=1 δ

(τ)

and each entry of x(0) and δ(τ) being non-negative. Applying
the bound on ‖x(t)‖1 from Claim 3.6 then gives:

ε · λmax

(
t∑

τ=1

M(τ)

)
≤ lnn+ (1 + ε)4K

Putting these together, we get:

λmax(Ψ(t)) ≤ 1 + lnn+ (1 + ε)4K ≤ εK + (1 + ε)4K,

which allows us to conclude that Ψ(t) 4 (1 + 10ε)KI.

The spectrum bound lemma says that at any point in

the algorithm, the solution vector x(t) satisfies
∑
i x

(t)
i Ai 4

(1 + 10ε)KI. Together with Equation (3.7), we know that
if the algorithm completes the while loop, the solution x∗

that we return satisfies ‖x∗‖1 ≥ 1− 10ε and∑
i

x∗iAi = 1
(1+10ε)K

∑
i

x
(t)
i Ai 4 I.

Thus, x∗ is indeed a dual solution with value at least 1− 10ε.

To piece everything together, we set ε to ε/10, so if there

is an iteration in which B(t) is empty, we produce a primal
solution with value at most 1; otherwise, we return a dual
solution with value at least 1− ε. Hence, the algorithm has
the promised approximation bounds. Next we will analyze
its cost.

Cost Analysis. Similar to Young’s analysis, our analysis
relies on the notion of phases, grouping together iterations
with similar W(t) matrices into a phase in a way that ensures
the existence of a coordinate i with the property that this

coordinate is incremented (i.e., δ
(t)
i > 0) by a significant

amount in every iteration of this phase. To this end, we
say that an iteration t belongs to phase p if and only if

(1 + ε)p−1 < Tr
[
W(t)

]
≤ (1 + ε)p. A phase ends when

the algorithm terminates or the next iteration belongs to a
different phase.

Almost immediate from this definition is a bound on the
number of phases:

Lemma 3.7 The total number of phases is at most O(K/ε).

Proof. On the one hand, we have 0 4 Ψ(0), so

Tr
[
W(0)

]
≥ n · e0 = n.

On the other hand, we know that Ψ(T) 4 (1 +O(ε))K, so

Tr
[
W(t)

]
≤ n exp ((1 +O(ε))K). This means that the total

of number is phases is at most

log1+ε

Tr
[
W(T)

]
Tr [W(0)]

≤ log1+ε exp ((1 +O(ε))K) (3.10)

≤ 1

ε
(1 +O(ε))K = O

(
K

ε

)
(3.11)

To bound the total number of steps, we’ll analyze the
number of iterations within a phase. For this, we’ll need a
couple of claims. The first claim shows that if a coordinate
is incremented at the end of a phase, it must have been
incremented at every iteration of this phase.

Claim 3.8 If i ∈ B(t), then for all t′ < t belonging to the

same phase as t, i ∈ B(t′).

Proof. Suppose t belongs to phase p. As i ∈ B(t), we
know that W(t) •Ai ≤ (1 + ε)p+1. Since t′ < t we have

Ψ(t) −Ψ(t′) =
∑

t′≤τ<t

M(τ) (3.12)

=
∑

t′≤τ<t

∑
i

δ
(τ)
i Ai � 0 (3.13)

Therefore W(t′) 4 W(t) and that

W(t′) •Ai ≤W(t) •Ai ≤ (1 + ε)p+1, (3.14)

which means that i ∈ B(t′), as desired.

In the second claim, we’ll place a bounding box around

each coordinate x
(t)
i of our solution vectors. This turns out

to be an important machinery in bounding the number of
iterations required by the algorithm.

Claim 3.9 (Bounding Box) For all index i, at any itera-
tion t,

x
(t)
i ≤ (1 +O(ε))n2K/Tr [Ai]x

(0)
i

Proof. Recall that x
(0)
i = 1/(nTr [Ai]). To argue an

upper bound on x
(t)
i , note that Lemma 3.3 gives

Ψ(t) 4 (1 +O(ε))IK (3.15)

Since
∑n
j=1 x

(t)
j Ai = Ψ(t) and each Ai is positive semidefi-

nite, we have

Tr
[
x

(t)
i Ai

]
≤ Tr

[
Ψ(t)

]
≤ (1 +O(ε))nK (3.16)

We conclude that x
(t)
i ≤ (1 + O(ε))n2K/Tr [Ai]x

(0)
i , as

claimed.

The final claim shows that each iteration makes significant
progress in incrementing the solution.

Claim 3.10 In each iteration, either ‖δ(t)‖1 = ε or α ≥
Ω(ε/K).

Proof. We chose α to be min{ε/‖x(t−1)
B ‖1, ε/(1+10ε)K}.

If α = ε/‖x(t−1)
B ‖1, then ‖δ(t)‖1 = ε and we are done. Oth-

erwise, we have α = ε/(1+10ε)K, which is Ω(ε/K).

Combining these claims, we have the following bounds on
the number of iterations:

Corollary 3.11 The number of iterations per phase is at
most

O

(
K

ε
ln (nK)

)
.

and the total number of iterations is at most:

O

(
log3 n

ε4

)
Proof. Consider a phase of the algorithm, and let f be

the final iteration of this phase. By Claim 3.10, each iteration
t satisfies ‖δ(t)‖1 = ε or α ≥ Ω(ε/K). Since ‖x(t)‖1 ≤ K + ε

for all t ≤ T , the number of iterations in which ‖δ(t)‖1 = ε

can be at most O(K/ε). Now, let i ∈ B(f) be a coordinate
that got incremented in the final iteration of this phase. By
Claim 3.8, this coordinate got incremented in every iteration
of this phase. Therefore, the number of iterations within this
phase where α ≥ Ω(ε/K) is at most

log1+Ω(ε/K)(x
(f)
i /x(0)) ≤ log1+Ω(ε/K)

(
(1 +O(ε)n2K

)
= O

(
K

ε
ln ((1 +O(ε))K)

)
.

Combining with Lemma 3.7 and the setting of K = O
(

logn
ε

)
gives the overall bound.

4. MATRIX EXPONENTIAL EVALUATION
We describe a fast algorithm for computing the matrix dot
product of a positive semidefinite matrix and the matrix
exponential of another positive semidefinite matrix.

Theorem 4.1 There is an algorithm bigDotExp that when
given a m-by-m matrix Φ with p non-zero entries, κ ≥
max{1, ‖Φ‖2}, and m-by-m matrices Ai in factorized form
Ai = QiQ

>
i where the total number of nonzeros across all

Qi is q; bigDotExp(Φ, {Ai = QiQ
>
i }ni=1) computes (1± ε)

approximations to all exp (Φ)•Ai in O(κ logm log(1/ε)) depth
and O(1

ε2
(κ log(1/ε)p+ q) logm) work.

The idea behind Theorem 4.1 is to approximate the matrix
exponential using a low-degree polynomial because evaluating
matrix exponentials exactly is costly. For this, we will apply
the following lemma, reproduced from Lemma 6 in [AK07]:

Lemma 4.2 ([AK07]) If B is a PSD matrix such that
‖B‖2 ≤ κ, then the operator

B̂ =
∑

0≤i<k

1

i!
Bi where k = max{e2κ, ln(2ε−1)}

satisfies

(1− ε) exp (B) � B̂ � exp (B).

Proof of Theorem 4.1. The given factorization of each
Ai allows us to write exp (Φ) •Ai as the 2-norm of a vector:

exp (Φ) •Ai =Tr
[
exp (Φ)QiQ

>
i

]
=Tr

[
Q>i exp (1

2
Φ) exp (1

2
Φ)Qi

]
=‖exp (1

2
Φ)Qi‖2

By Lemma 4.2, it suffices to evaluate B̂ •Ai where B̂ is
an approximation to B = exp(1

2
Φ). To further reduce the

work, we can apply the Johnson-Lindenstrauss transforma-
tion [DG03, IM98] to reduce the length of the vectors to
O(logm); specifically, we find a O(1

ε2
logm)×m Gaussian

matrix Π and evaluate

‖ΠB̂Qi‖2

Since Π only has O(1
ε2

logm) rows, we can compute ΠB̂

using O(logm) evaluations of B̂. The work/depth bounds

follow from doing each of the evaluations of B̂Πi, where Πi

denotes the i-th column of Π, and matrix-vector multiplies
involving Φ in parallel.

5. CONCLUSION
We presented a simple NC parallel algorithm for packing
SDPs that requires O(1

ε4
log4 n log(1

ε
)) iterations, where each

iteration involves only simple matrix operations and comput-
ing the trace of the product of a matrix exponential and a
positive semidefinite matrix. When a positive SDP is given
in a factorized form, we showed how the dot product with
matrix exponential can be implemented in nearly-linear work,

leading to an algorithm with Õ(m+ n+ q) work, where n
is the number of constraint matrices, m is the dimension of
these matrices, and q is the total number of nonzero entries
in the factorization.

Compared to the situation with positive LPs, the classifica-
tion of positive SDPs is much richer because packing/covering
constraints can take many forms, either as matrices (e.g.∑n
i=1 xiAi 4 I for packing,

∑n
i=1 xiAi < I for covering)

or as dot products between matrices (e.g. Ai •Y ≤ 1 for
packing, Ai •Y ≥ 1 for covering). The positive SDPs stud-
ied in [JY11] and our paper should be compared with the
closely related notion of covering SDPs studied by Iyengar et
al [IPS10]; however, among the applications they examine,
only the beamforming SDP relaxation discussed in Section
2.2 of [IPS10] falls completely within the framework of pack-
ing SDPs as defined in 1.2. Problems such as MaxCut
and SparsestCut require additional matrix-based packing
constraints. We believe extending these algorithms to solve
mixed packing/covering SDPs is an interesting direction for
future work.

Acknowledgments
This work is partially supported by the National Science
Foundation under grant numbers CCF-1018463, CCF-1018188,
and CCF-1016799 and by generous gifts from IBM, Intel,
and Microsoft. Richard Peng is supported by a Microsoft
Fellowship. We thank the SPAA reviewers for suggestions
that helped improve this paper.

References
[AHK05] Sanjeev Arora, Elad Hazan, and Satyen Kale.

Fast algorithms for approximate semide.nite pro-
gramming using the multiplicative weights update
method. In FOCS, pages 339–348, 2005.

[AK07] Sanjeev Arora and Satyen Kale. A combinatorial,
primal-dual approach to semidefinite programs. In
STOC, pages 227–236, 2007.

[DG03] Sanjoy Dasgupta and Anupam Gupta. An elemen-
tary proof of a theorem of johnson and linden-
strauss. Random Struct. Algorithms, 22(1):60–65,
2003.

[GK98] Naveen Garg and Jochen Könemann. Faster and
simpler algorithms for multicommodity flow and
other fractional packing problems. In Proceedings
of the 39th Symposium on the Foundations of Com-
puter Science (FOCS), pages 300–309, 1998.

[GLS93] Martin Grötschel, László Lovász, and Alexander
Schrijver. Geometric Algorithms and Combinato-
rial Optimization. Springer-Verlag, New York, 2nd
edition, 1993.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate
nearest neighbors: Towards removing the curse of
dimensionality. In Proceedings of the 30th ACM
Symposium on the Theory of Computing (STOC),
pages 604–613, 1998.

[IPS10] Garud Iyengar, David J. Phillips, and Clifford
Stein. Feasible and accurate algorithms for covering
semidefinite programs. In SWAT, pages 150–162,
2010.

[IPS11] Garud Iyengar, David J. Phillips, and Clifford
Stein. Approximating semidefinite packing pro-
grams. SIAM Journal on Optimization, 21(1):231–
268, 2011.

[JáJ92] Joseph JáJá. An Introduction to Parallel Algo-
rithms. Addison-Wesley, 1992.

[JY11] Rahul Jain and Penghui Yao. A parallel approxima-
tion algorithm for positive semidefinite program-
ming. In FOCS, pages 463–471, 2011.

[JY12] Rahul Jain and Penghui Yao. A parallel approxi-
mation algorithm for mixed packing and covering
semidefinite programs. CoRR, abs/1201.6090, 2012.

[Kal07] Satyen Kale. Efficient Algorithms using the Mul-
tiplicative Weights Update Method. PhD thesis,
Princeton University, August 2007. Princeton Tech
Report TR-804-07.

[KL96] Philip N. Klein and Hsueh-I Lu. Efficient approxi-
mation algorithms for semidefinite programs aris-
ing from MAX CUT and COLORING. In STOC,
pages 338–347, 1996.

[KY07] Christos Koufogiannakis and Neal E. Young. Beat-
ing simplex for fractional packing and covering
linear programs. In FOCS, pages 494–504, 2007.

[KY09] Christos Koufogiannakis and Neal E. Young. Dis-
tributed and parallel algorithms for weighted ver-
tex cover and other covering problems. In PODC,
pages 171–179, 2009.

[LN93] Michael Luby and Noam Nisan. A parallel approx-
imation algorithm for positive linear programming.
In STOC’93, pages 448–457, New York, NY, USA,
1993.

[PST95] Serge A. Plotkin, David B. Shmoys, and Éva Tar-
dos. Fast approximation algorithms for fractional
packing and covering problems. Math. Oper. Res.,
20(2):257–301, 1995.

[You01] Neal E. Young. Sequential and parallel algorithms
for mixed packing and covering. In FOCS, pages
538–546, 2001.

APPENDIX

A. NORMALIZED POSITIVE SDPS
This is the same transformation that Jain and Yao pre-
sented [JY11]; we only present it here for easy reference.

Consider the primal program in (1.1). It suffices to show
that it can be transformed into the following program without
changing the optimal value:

Minimize Tr [Z]
Subject to: Bi • Z ≥ 1 for i = 1, . . . ,m

Z < 0,
(A.1)

We can make the following assumptions without loss of
generality: First, bi > 0 for all i = 1, . . . ,m because if bi were
0, we could have thrown it away. Second, all Ai’s are the
support of C, or otherwise we know that the corresponding
dual variable must be set to 0 and therefore can be removed
right away. Therefore, we will treat C as having a full-rank,
allowing us to define

Bi
def
=

1

bi
C−1/2AiC

−1/2

It is not hard to verify that the normalized program (A.1)
has the same optimal value as the original SDP (1.1).

Note that if we’re given factorization of Ai into QiQ
>
i ,

then Bi can also be factorized as:

Bi =
1

bi
(C−1/2Qi)(C

−1/2Qi)
>

Furthermore, it can be checked that the dual of the nor-
malized program is the same as the dual in Equation 1.2.

	Introduction
	Overview

	Background and Notation
	Solving Positive SDPs
	Analysis

	Matrix Exponential Evaluation
	Conclusion
	Normalized Positive SDPs

