
Parallel and I/O Efficient Set Covering Algorithms

Guy E. Blelloch Harsha Vardhan Simhadri Kanat Tangwongsan
Carnegie Mellon University

{guyb, hsimhadr, ktangwon}@cs.cmu.edu

ABSTRACT
This paper presents the design, analysis, and implementation
of parallel and sequential I/O-efficient algorithms for set
cover, tying together the line of work on parallel set cover
and the line of work on efficient set cover algorithms for large,
disk-resident instances.

Our contributions are twofold: First, we design and ana-
lyze a parallel cache-oblivious set-cover algorithm that offers
essentially the same approximation guarantees as the stan-
dard greedy algorithm, which has the optimal approximation.
Our algorithm is the first efficient external-memory or cache-
oblivious algorithm for when neither the sets nor the elements
fit in memory, leading to I/O cost (cache complexity) equiv-
alent to sorting in the Cache Oblivious or Parallel Cache
Oblivious models. The algorithm also implies low cache
misses on parallel hierarchical memories (again, equivalent
to sorting). Second, building on this theory, we engineer
variants of the theoretical algorithm optimized for different
hardware setups. We provide experimental evaluation show-
ing substantial speedups over existing algorithms without
compromising the solution’s quality.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Algorithms, Theory

Keywords: Parallel algorithms, set cover, max k-cover, ex-
ternal memory algorithms, approximation algorithms.

1. INTRODUCTION
Set cover is one of the most fundamental and well-studied
problems in optimization and approximation algorithms. For
decades, this problem and its variants have found many
applications, including locating warehouses, testing faults,
scheduling crews on airlines, and allocating wavelength in
wireless communication. These applications often have to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’12, June 25–27, 2012, Pittsburgh, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1213-4/12/06 ...$10.00.

deal with massive data [14] and are well-suited for parallel
and I/O efficient algorithms.

Let U be a set of n ground elements, F be a collection of
subsets of U that together covers U (i.e., ∪S∈FS = U), and
c : F → R+ be a cost function. The set cover problem is to
find the cheapest collection of sets A ⊆ F that that covers U
(i.e., ∪S∈AS = U), where the cost of a solution A is specified
by c(A) =

∑
S∈A c(S). Unweighted set cover (all weights are

equal) appeared as one of the 21 problems Karp identified
as NP-complete in 1972 [21]. Two years later, Johnson [19]
proved that the simple greedy method gives an approximation
that is at most a factor Hn =

∑n
k=1

1
k

from optimal. Subse-
quently, Chvátal [13] proved the same approximation bounds
for the weighted case. These results are complemented by
a matching hardness result: Feige [16] showed that unless

NP ⊆ DTIME(nO(log logn)), set cover cannot be approximated
in polynomial time with a ratio better than (1− o(1)) lnn.
This essentially shows that the greedy algorithm is optimal.
Furthermore, the greedy algorithm is particularly simple run-
ning in O(W) time for the unweighted case and O(W logW)
time for the weighted case. Here, W ≥ n is the sum of the
sizes of the sets. In the bipartite graph view we will use later
on, the quantity W is the number of edges in the graph.

The greedy algorithm seems hard to parallelize directly,
but Berger, Rompel, and Shor [2] (BRS) showed that it
can be “approximately” parallelized leading to an O(log5W)-
depth and O(W log4W)-work randomized algorithm, giving
a (1 + ε)Hn-approximation on a PRAM. Rajagopalan and
Vazirani [24] later gave an improvement in both work and
depth. More recently, this was improved to linear work
and smaller depth [7]. In terms of I/O efficient algorithms,
Cormode, Karloff, and Wirth recently developed an efficient
algorithm for the case when the elements—but not necessarily
the sets—fit in memory [14]. We know of no I/O efficient
solutions for the general case (i.e. when neither the sets
nor the elements fit in memory). Furthermore, the CKW
algorithm is strictly sequential.

Our Contributions: This paper presents the design, anal-
ysis, and experimental evaluation of set-covering algorithms.
First, we design and analyze approximation algorithms for
set cover and related problems that are both parallel and
I/O efficient. These are the first results we know of for I/O
efficient set cover where neither the sets nor elements fit in
memory. Building on this theory, we implemented slight vari-
ants of the theoretical algorithm optimized for two different
hardware setups: one a high-end parallel workstation and
the other a “wimpy” machine with small memory but a fast
disk. We provide extensive experimental evaluation show-

ing non-trivial speedups over existing algorithms without
compromising the solution’s quality.

Our theoretical results show how to implement recent
results for parallel set cover [7] (BPT) in an I/O efficient
manner. In the cache oblivious model [17] with cache size
parameter M and block size B, our algorithm has cache
complexity O(W

B
log M

B

W
B

). This matches the complexity of

sorting. Furthermore, we achieve polylogarithmic depth and
the same cache complexity bounds in the more stringent
parallel cache oblivious model [4]. Our results modify the
BPT algorithm with appropriate data structures. The algo-
rithms give an (1 + ε)Hn-approximation for arbitrary ε > 0
and hence are essentially optimal. In addition to set cover,
as shown in [7], the same sequence of sets can be used as
a solution to max cover and min-sum set cover. For max
cover, this sequence is prefix optimal: for any prefix of length
k, this prefix is a (1 − 1/e − ε)-approximation to the max
k-cover problem.

We have implemented and experimented with two variants
of our algorithm, one for shared-memory parallel machines
and one for external memory. The main difference between
the two variants is how we implement the communication
steps. We experiment with the parallel variant on a modern
40-core machine and with the external memory variant on
a more modest machine using a solid-state drive (SSD).
We test the algorithms with several large instances with
up to 5.5 billion edges. For the parallel version, we are
able to achieve significant speedup over a fast sequential
implementation. In particular, we compare to the CKW
sequential algorithm which is already significantly faster
than the greedy algorithm. For our largest graph with about
5.5 billion edges, the algorithm runs in around 10 seconds
and is 13.5x faster than the CKW algorithm. In fact, it runs
faster than optimized parallel sorting code [25] on the same
sized data. For the max k-cover problem, we empirically
show that it is often possible to speedup the computation
by more than a factor of 2 by stopping the algorithm early
when k is known and is small relative to the set cover’s
solution size. For the sequential I/O variant, we are able
to achieve orders of magnitude speedups over the results
of CKW when neither the sets nor elements fit in memory.
When the elements fit in memory, the CKW algorithm is
faster. With regards to quality of the results (number of sets
returned), our algorithm returns about the same number of
sets as the other algorithms.

2. PRELIMINARIES AND NOTATION
Let [k] be the set {1, 2, . . . , k}. For a graph G, we denote
by degG(v) the degree of the vertex v in G. We denote by
NG(v) the neighbor set of the node v and by NG(X) the
neighbors of the vertex set X, i.e., NG(X) = ∪w∈XNG(w).
We drop the subscript when the context is clear. Let V (G)
and E(G) denote respectively the set of nodes and the set of
edges. We also write |G| to mean the number of edges of G.
For an input of size W , we assume that every memory word
has O(logW) bits.

Computation Model. We present algorithms in the nested
parallel model, allowing arbitrary dynamic nesting of par-
allel loops and fork-join constructs but no other synchro-
nizations. This corresponds to the class of algorithms with
series-parallel dependence graphs (see Figure 1). Computa-
tions can be decomposed into “tasks”, “parallel blocks” and

“strands” recursively: As a base case, a strand is a serial se-
quence of instructions not containing any parallel constructs
or subtasks. A task is formed by serially composing k ≥ 1
strands interleaved with (k− 1) “parallel blocks” (denoted by
t = s1; b1; . . . ; sk). A parallel block is formed by composing
in parallel one or more tasks with a fork point before all of
them and a join point after (denoted by b = t1‖t2‖ . . . ‖tk).
A parallel block can be, for example, a parallel loop or some
constant number of recursive calls. The top-level computa-
tion is a task. The span (aka. depth) of a computation is
the length of the longest path in the dependence graph.

f

Task

Strand

Parallel Block

g

Figure 1. Decomposing the computation: tasks, strands
and parallel blocks

Measuring Memory Access Costs. We will analyze al-
gorithms in the Parallel Cache Oblvivious (PCO) model [4],
which is a parallel variant of the cache oblivious (CO) model
and gives cache complexity costs that are always at least
as large. Therefore any upper bounds on the PCO are also
upper bounds on the CO model. The Cache Oblivious (CO)
model [17] is a model for measuring cache misses of an al-
gorithm, when run on a single processor machine with a
two-level memory hierarchy—one level of finite cache and a
memory of unbounded size. The cache complexity measure
of an algorithm under this model Q (n;M,B) counts the
number of cache misses incurred by a problem instance of
size n when run on a fully associative cache of size M and line
size B using the optimal offline algorithm (i.e., the optimal
cache replacement policy). Throughout the paper we assume
that M ≥ B (the tall cache assumption).

Like the cache-oblivious model, in the Parallel Cache-
Oblivious (PCO) model , there is a memory of unbounded
size and a single cache with size M , line-size B (in words),
and optimal replacement policy. The cache state κ consists
of the set of cache lines resident in the cache at a given time.
When a location in a non-resident line l is accessed and the
cache is full, l replaces in κ the line accessed furthest into
the future, incurring a cache miss. To extend the CO model
to parallel computations, one needs to define how to analyze

Task t forks subtasks t1 and t2,
with κ = {l1, l2, l3}

t1 accesses l1, l4, l5 incurring 2 misses
t2 accesses l2, l4, l6 incurring 2 misses

At the join point: κ′ = {l1, l2, l3, l4, l5, l6}

Figure 2. Applying the PCO model (Definition 2.1) to a
parallel block. Here, Q∗(t;M,B;κ) = 4.

the number of cache misses for the tasks that run in parallel
in a parallel block. The PCO model approaches it by (i)
ignoring any data reuse among the parallel subtasks and (ii)
assuming the cache is flushed at each fork and join point of
any task that does not fit within the cache.

More formally, let loc(t;B) denote the set of distinct cache
lines accessed by task t, and S(t;B) = |loc(t;B)| ·B denote
its size (also let s(t;B) = |loc(t;B)| denote the size in terms
of number of cache lines). Let Q(c;M,B;κ) be the cache
complexity of c in the sequential CO model when starting
with cache state κ.

Definition 2.1 (Parallel Cache-Oblivious Model) For
cache parameters M and B the cache complexity of a
strand, parallel block, and a task starting in cache state κ are
defined recursively as follows (refer [4] for more details).

• For a strand, Q∗(s;M,B;κ) = Q(s;M,B;κ).
• For a parallel block b = t1‖t2‖ . . . ‖tk,

Q∗(b;M,B;κ) =
∑k
i=1Q

∗(ti;M,B;κ).
• For a task t = c1; . . . ; ck,
Q∗(t;M,B;κ) =

∑k
i=1Q

∗(ci;M,B;κi−1),

where κi = ∅ if S(t;B) > M , and κi = κ∪ij=1 loc(cj ;B)
if S(t;B) ≤M .

We use Q∗(c;M,B) to denote a computation c starting
with an empty cache, Q∗(n;M,B) when n is a parameter of
the computation. We note that Q∗(c;M,B) ≥ Q(c;M,B).
When applied to a parallel machine, Q∗ is a “work-like” mea-
sure and represents the total number of cache misses across
all processors. An appropriate scheduler is used to evenly
balance them across the processors.

Primitives. We need primitives such as sorting, prefix
sums, merge, filter, map for the set cover algorithm. Par-
allel algorithms with optimal cache complexity in the PCO
model and polylogarithmic depth can be constructed for
these problems (for details, see [5, 4]). The cache complex-
ity of sorting on an input instance n in the PCO model is
sort(n;M,B) = O(n

B
logM/B

n
B

), while the complexity of the
other primitives is O(n/B). We use sort(n) as shorthand.
All these primitives have O(log2 n) depth.

3. ALGORITHM DESIGN
This section describes an efficient implementation of the
BPT set cover algorithm [7] in the PCO model, implying
good I/O complexity in other related models. We begin by
reviewing the BPT algorithm and describing how to achieve
an I/O efficient algorithm that satisfies Theorem 3.1. In
the following section, we discuss optimizations we made to
the theoretical algorithm to achieve good performance on
different hardware setups.

We state the complexity of the set cover algorithm in terms
of W , which, as defined previously, is the sum of the set sizes:

Theorem 3.1 (Parallel and I/O Efficient Set Cover)
The I/O (cache) complexity of the randomized approximate
set cover algorithm on an instance of size W is expected
O(sort(W)) and the depth is O(polylog(W)) whp. Further-
more, this implies an algorithm for prefix-optimal max cover
and min-sum set cover in the same complexity bounds.

Consider the BPT algorithm in Algorithm 3.1. At the core
of it are the following 3 ingredients—prebucketing, maximal

Algorithm 3.1 SetCover — Blelloch et al. parallel greedy
set cover.
Input: a set cover instance (U ,F , c) and a parameter ε > 0.
Output: a ordered collection of sets covering the ground elements.

i. Let γ = maxe∈U minS∈F c(S), W =
∑
S∈F |S|, T =

log1/(1−ε)(W
3/ε), and β = W2

ε·γ .

ii. Let (A;A0, . . . , AT) = Prebucket(U ,F , c) and U0 = U \
(∪S∈AS).

iii. For t = 0, . . . , T , perform the following steps:

1. Remove deleted elements from sets in this bucket: A′t =
{S ∩ Ut : S ∈ At}

2. Only keep sets that still belong in this bucket: A′′t = {S ∈
A′t : c(S)/|S| > β · (1− ε)t+1}.

3. Select a maximal nearly independent set from the bucket:
Jt = MaNIS(ε,3ε)(A

′′
t).

4. Remove elements covered by Jt: Ut+1 = Ut \Xt where
Xt = ∪S∈JtS

5. Move remaining sets to the next bucket: At+1 = At+1 ∪
(A′t \ Jt)

iv. Finally, return A ∪ J0 ∪ · · · ∪ JT .

near-independent set (MaNIS), and bucket management—
which we discuss in turn:

— Prebucketing: This component (Step ii of the algorithm)
buckets the sets based on their cost. To ensure that the ratio
between the costliest set and cheapest set is polynomially
bounded so that the total number of buckets is kept logarith-
mic, as described in Lemma 4.2 of [7], sets that cost more
than a threshold are discarded, and all sets cheaper than a
certain threshold (A) are included in the solution and the
elements in these included sets marked as covered. Then
U0 consists of the uncovered elements. The remaining sets
are placed into O(logW) buckets (A0, A1, . . . , AT) by their
normalized cost (cost per element).

The algorithm then enters the main loop (step iii.), iter-
ating over the buckets from the least to the most expensive
and invoking MaNIS once in each iteration.

— MaNIS: Invoked in Step iii(3) of the set cover algorithm,
MaNIS finds a subcollection of the sets in a bucket that are
almost non-overlapping with the goal of closely mimicking
the greedy behavior. Algorithm 3.2 shows the MaNIS algo-
rithm, reproduced from [7]. (The annotations on the side
indicate which primitives in the PCO model we will use to
implement them.) Conceptually, the input to MaNIS is a
bipartite graph with left vertices representing the sets and
the right vertices representing the elements. The procedure
starts with each left vertex picking random priorities (step
2). Then, each element identifies itself with the highest pri-
ority set containing it (step 3). If “enough” elements identify
themselves with a set, the set selects itself (step 4). All se-
lected sets and the elements they cover are eliminated (steps
5(1), 5(2)), and the cost of remaining sets is re-evaluated
based on the uncovered elements. Only sets (A′) with costs
low enough to belong to the correct bucket (which invoked
this MaNIS) are selected in step 5(3) and the procedure
continues with another level of recursion in step 6. The net
result is that we choose nearly non-overlapping sets, and the
sets that are not chosen are “shrunk” by a constant factor.

— Bucket Movement: The remaining steps in Algorithm 3.1
are devoted to moving sets between buckets, ensuring the
contents of the least-costly bucket contain only sets in a

specific cost range. Step iii(4) removes elements covered by
the sets returned by MaNIS; step iii(5) transfers the sets not
selected in MaNIS to the next bucket; and step iii(2) selects
only those sets with costs in the current bucket’s range for
passing to MaNIS.

3.1 I/O Efficient Algorithm
We now discuss the right set of data structures and primitives
to make the above algorithm both parallel and I/O efficient.
In both the set cover and MaNIS algorithms, the set-element
instance is represented as a bipartite graph with sets on the
left. A list of sets as well as a compact and contiguous
adjacency list for each set is stored. The universe of elements
U is represented as a bitmap indexed by an element identifier
which is updated to indicate when element has been covered.
Since we only need one bit of information per element to
indicate whether it is covered or not, this can be stored

in O(|U|
logW

) words. Unlike in [6], we do not maintain back
pointers from the elements to the sets.

— Prebucketing: This phase involves sorting sets based on
their cost and a filter to remove the costliest and the cheap-
est set. Sets can then be partitioned into buckets with a
merge operation. All operations have less than sort(W) I/O
complexity and O(log2 n) depth in the PCO model.

— MaNIS: We invoke MaNIS in step 3 of the set cover
algorithm. Inside MaNIS, we store the remaining elements
of U (right vertices) as a sequence of element identifiers. To
implement MaNIS, in Step 3, for each left vertex, we copy
its value xa to all the edges incident on it, then sort the
edges based on the right vertex so that the edges incident on
the same right vertex are contiguous. For each right vertex,
we can now use a prefix “sum” using maximum to find the
neighbor a with the maximum xa. In step 4, the “winning”
edges (an edge connecting a right vertex with it’s chosen left
vertex) are marked on the edge list for each right vertex we
computed in step 3. The edge list is then sorted based on
the left vertex. Prefix sum can then be used to compute
the number of elements each set has “won”. A compact
representation for J and its adjacency list can be computed
with a filter operation. In step 5(1), the combined adjacency
list of elements in J is sorted and duplicates removed to get B.
For step 5(2), we first evaluate the list A \ J . Then, we sort
the edges incident on A\J based on their right vertices; merge
with the remaining elements to identify which is contained in
B, marking these edges accordingly. After sorting these edges
based on their left vertices, for each left vertex a ∈ A \ J ,
we filter and pack the “live edges” to compute N ′G(a). Steps
5(3) and 5(4) involve simple filter and sum operations. The
most I/O intensive operation (as well as the operation with
maximum depth) in each round of MaNIS is sorting, which
requires at most O(sort(|G|)) I/O complexity and O(log2 |G|)
depth in the PCO model. As analyzed in [7], for a bucket with
Wt edges to start with, MaNIS runs for at most O(logWt)
rounds—and after each round, the number of edges drops by
a constant factor; therefore, we have the following bounds:

Lemma 3.2 The cache (I/O) complexity in the PCO model
of running MaNIS on a bucket with Wt edges is O(sort(Wt)),
and the depth is O(Dsort(Wt) logWt).

— Bucket Movement: We assume the At, A
′
t and A′′t are

stored in the same format as the input for MaNIS (see 3.1).

The right set of vertices of the bipartite graph is now a
bitmap corresponding to the elements indicating whether
an element is alive or dead. Step iii(1) is similar to Step
3 of MaNIS. We first sort S ∈ At to order the edges by
element index, then merge this representation (with a vector
of length O(|U|/ logW)) to match them with the elements
bitmap, do a filter to remove deleted edges, and perform
another sort to get them back ordered by set. Step iii(2) is
simply a filter. The append operation in Step iii.5 is no more
expensive than a scan. In the PCO models, these primitives
have I/O complexity at most O(sort(Wt) + scan(|U|/ logW))
for a bucket with Wt edges. They all have O(Dsort(W))
depth.

To show the final cache (I/O) complexity bounds, we make
use of the following claim:

Claim 3.3 ([7]) Let Wt be the number of edges in bucket t
at the beginning of the iteration which processes this bucket.
Then,

∑
Wt = O(W).

Therefore, we haveO(sort(W)) from prebucketing, O(sort(W))
from MaNIS combined, and O(sort(W) + scan(U)) from
bucket management combined (since there are log(W) rounds).
This simplifies to an I/O (cache) complexity ofQ∗(W ;M,B) =
O(sort(W ;M,B)) since U ≤ W . The depth is O(log4W),
since set cover has O(logW) iterations to go through buck-
ets, each and invoking a MaNIS which has O(logW) rounds
(w.h.p.) and each round is dominated by the sort that has a
maximum depth of O(log2W). of recursion.

4. IMPLEMENTATION
We highlight a number of design decisions that we made for
the two versions of the MaNIS-based set cover algorithm:
one optimized for the multicore architecture and the other
for the external-memory setting. In both implementations,
we represent the set system (i.e., the sets and their elements)
as a contiguous array of integers listing the elements belong-
ing to the sets; we also keep a pointer to the starting point
of each set. This is essentially the compressed sparse row
(CSR) format for sparse matrices. Furthermore, in both im-
plementations, we maintain a “bitmap” vector that indicates
whether or not an element has been covered by a set already;
however, as detailed below, how we keep this vector depends
on the particular implementation.

Parallel Implementation. This implementation targets
modern machines with many cores and sufficient RAM to fit
and process the dataset if sufficient care is taken to manage
the memory. The goal of this implementation is therefore
to take advantage of available parallelism and locality, and
strike a balance between the computation cost and memory-
access cost. We chose to implement the “bitmap” as a vector
of integers of length |U|. On the surface, this may seem
like a waste of space, but we made this decision so that
MaNIS can be efficiently implemented in-place using priority
writes. Initially, we apply bucket sort and standard prefix
computations to classify the input sets into the buckets they
belong. To implement MaNIS, we notice that each round
of MaNIS involves two major phases: (1) deciding for each
element the “winning” set—the set with the highest priority
that covers it and (2) subsequently, counting for each set
that the elements on which it has won. The former phase
can be done using concurrent priority writes, and the latter

Algorithm 3.2 MaNIS(ε,3ε)(G)

Input: A bipartite graph G = (A,NG(a))
A is a sequence of left vertices (the sets), and NG(a), a ∈ A are the neighbors of each left vertex on the right.
These are represented as contiguous arrays. The right vertices are represented implicitly as B = NG(A).

Output: J ⊆ A of chosen sets.

1. If A is empty, return the empty set.

2. For a ∈ A, randomly pick xa ∈R {0, . . . , |G|7 − 1}. //map
3. For b ∈ B, let ϕ be b’s neighbor with maximum xa // sort and prefix sum

4. Pick vertices of A “chosen” by sufficiently many in B: // sort, prefix sum, sort and filter

J = {a ∈ A|#{b : ϕ(b) = a} ≥ (1− 4ε)D(a)}.

5. Update the graph by removing J and its neighbors, and elements of A with too few remaining neighbors:
(1) B = NG(J) (elements to remove) // sort

(2) N ′G = {{b ∈ NG(a)|b 6∈ B} : a ∈ A \ J} // sort, merge, sort and filter
(3) A′ = {a ∈ A \ J : |N ′G(a)| ≥ (1− ε)D(a)} // filter
(4) N ′′G = {{b ∈ N ′G(a)} : a ∈ A′} // filter

6. Recurse on reduced graph: JR = MaNIS(ε,3ε)((A
′, N ′′G))

7. return J ∪ JR

phase involves random-accesses to the “bitmap” vector and
resetting the values in the bitmap as necessary.

Our experiments show that simulating priority writes us-
ing compare and swap (CAS) on these sets in a standard
way does not produce high contention—and is in fact faster
than running sort a few times (like what was described pre-
viously). By doing so, we are able to implement MaNIS
in-place, which helps reduce the memory footprint of our
implementation. For performance, we also made efforts to
minimize the number of passes over the bitmap and the data.

Extra care is given to how the MaNIS steps are imple-
mented. To reduce the number of times a set needs to be
processed within MaNIS, we use an approach which only
processes the higher priority sets on each parallel round, us-
ing ideas similar to what is described in [3]. More specifically,
we pre-order the sets by the (psuedo)-random priorities, and,
on each round, process a prefix of this ordering. Since the
prefix has high priorities, the sets are less likely to be forced
to another round saving some work. In the limit, the prefix
size would be one, effectively giving the CKW algorithm. In
our experiments, we use a prefix containing about one fourth
the original number of sets for all of the buckets except for
the buckets with the largest sets. For the buckets with large
sets, we specialize MaNIS to run with a prefix of size one (we
term this serialManis). This leads to a light-weight imple-
mentation which can still take advantange of parallelism on
the edges without the bulkiness of the full-fledged MaNIS.

Disk-optimized Implementation. At the other end of
the spectrum, we target a single-core machine with so little
fast memory that not even the bitmap—the bit indicator
array for the elements—can fit in main memory, but this
machine has relatively fast disk (e.g., a solid-state drive).
In this case, random-accessing an array is in general very
costly. Our implementation in this case follows the theoretical
description rather closely: The“bitmap”vector is kept as a bit
array—this most-obvious optimization yields substantially
better performance than the alternative of using 1 byte
per element. Initially, like in the parallel case, we apply
bucket sort and standard prefix computations to classify
the input sets into the buckets they belong. Each round
of MaNIS, then, is implemented as a series of external-
memory sorts and scans. We resort to STXXL, a C++

reimplementation of the Standard Template Library (STL)
to perform external-memory (out-of-core) computations and
disk-resident data management [15, 25]. STXXL hides from
the users the intricate optimizations done at the low-level
(e.g., asynchronous/bulk I/O).

5. EVALUATION
We empirically investigate the performance of the proposed
algorithms. We implemented two variants of the algorithm,
one optimized for the multicore architecture and the other
optimized for disk-based computation. For a setting of ε, all
implementations are guaranteed to produce a solution that
is no worse than (1 + ε)Hn times the optimal solution, where
Hn = 1 + 1

2
+ · · ·+ 1

n
denotes the n-th Harmonic number.

5.1 Experimental Setup

Datasets. Our study uses a diverse collection of instances
derived from various sources of popular graphs. Many of the
datasets here are obtained from the datasets made publicly
available by the Laboratory for Web Algorithmics at Univer-
sità degli studi di Milano [8, 10]. These datasets are derived
from directed graphs of various kinds in a natural way: each
node v gives rise to a set and all nodes that v points to
are members of the set corresponding to v. We assign unit
weight to all the sets. Since the graphs are directed, some
nodes may have nonzero out-degree but have in-degree 0.
For the experiments, we consider such a node a set but not
an element (it will never be covered). This asymmetry is the
reason that the number of sets is not the same as the number
of elements. We give a detailed description of each instance
below and present a summary of these instances in Table 1.

—livejournal-2008 is derived from user-user relationships on
the LiveJournal blogging and virtual community site. Our
dataset is a snapshot taken by Chierichetti et al. [11], where
each set S is a user of the site and covers all users that are
listed as S’s friends.
— webdocs is a collection of web pages with directed links
between them [18]. We derive a set system from this graph
as described earlier.

Dataset # of sets # of elts. # of edges avg |S| max |S| ∆

webdocs 1,692,082 5,267,656 299,887,139 177.2 71,472 1,429,525
livejournal-2008 4,817,634 5,363,260 79,023,142 16.4 2,469 19,409
twitter-2010 40,103,281 41,652,230 1,468,365,182 36.6 2,997,469 770,155
twitter-2009 54,127,587 62,539,895 1,837,645,451 34.0 2,968,120 748,285
uk-union 121,503,286 133,633,040 5,507,679,822 45.3 22,429 6,010,077
altavista-2002-nd 532,261,574 1,413,511,386 4,226,882,364 7.9 2,064 299,007

Table 1. A summary of the datasets used in our experiments, showing for every dataset the number of sets, the number of
elements, the number of edges, the average set size (avg |S|), the maximum set size (max |S|), and the maximum number of
sets containing an element (∆ := max |{S 3 e}|).

— twitter-2010 is derived from a snapshot taken in 2010
of the follower relationship graph on the popular Twitter
network, where there is an edge from x to y if y “follows”
x [22]. The set system is derived as described earlier.
— twitter-2009 is an older, but larger, Twitter snapshot
taken in 2009 by a different research group [20].
— altavista-2002-nd is the AltaVista web links dataset from
2002 provided by Yahoo! WebScope. The dataset has been
preprocessed to remove dangling nodes, as suggested by
experts familiar with this dataset1.
— uk-union combines snapshots of webpages in the .uk

domain taken over a 12-month period between June 2006
and May 2007 [9].

While coincidentally the real-world data sets we consider
in this paper have about the same number of sets as the
number of elements, our algorithms are not optimized to
take advantage of this characteristic in any way.

5.2 Parallel Performance
The first set of experiments is concerned with the performance
of our multicore-optimized program in comparison to existing
sequential algorithms. These experiments are designed to
test our implementation on the following important metrics:

1. Solution’s Quality. The parallel algorithm should
deliver solutions with no significant loss in quality when
compared to the sequential counterpart;

2. Parallel Overhead. The parallel algorithm running
on a single core should not take much longer than its
sequential counterpart, showing empirically that it is
work efficient; and

3. Parallel Speedup. The parallel algorithm should
achieve good speedup2, indicating that the algorithm
can successfully take advantage of parallelism.

The baseline for the experiments is our own implemen-
tation of Cormode et al.’s disk-friendly greedy (DFG) al-
gorithm [14]. DFG is a good baseline for this experiment
because it achieves significant performance improvements
over the standard greedy algorithm by making a geometric-
scale bucketing approximation similar to ours. As previously
shown, this approximation does not harm the solutions’ qual-
ity in practice but makes it run much faster on both disk-
and RAM- based environments. Our implementation of DFG
closely follows the description in their paper but is further
optimized for performance. Because of the fine tuning we
made to the code, our implementation runs significantly

1See, e.g., http://law.dsi.unimi.it/webdata/altavista-2002-
nd/
2This measures how much faster it is running on many cores than
running sequentially.

faster than the numbers reported in Cormode et al. when
all the data fits in RAM, taking in account the differences
between machines. For this reason, we believe our DFG code
is a reasonable baseline. We also implemented the standard
greedy algorithm for comparison.

Evaluation Setup. Our parallel experiments were per-
formed on a 40-core (with hyperthreading) Intel machine,
consisting of four 2.4GHz 10-core E7-8870 Xeon processors,
a 1066MHz bus, and 256GB of main memory. The machine
is running Linux 3.2.0 (Red Hat). We compiled our programs
with Intel Cilk++ build 8503 using the optimization flag
-O3. The Cilk++ platform [23], in which the runtime system
relies on a work-stealing scheduler, is known to impose only
little overhead on both parallel and sequential code.

Results. Table 2 shows the performance of the three afore-
mentioned RAM-based algorithms when run with ε = 0.01
(for DFG and parallel MaNIS). Several things are clear.
First, parallel MaNIS achieves essentially the same solu-
tions’ quality as both DFG and the baseline algorithm. In
fact, with ε set to 0.01 for both DFG and parallel MaNIS,
all algorithms produce solutions of roughly the same quality—
within about 1% of each other. We will note that, despite
doing the most work, the standard greedy algorithm does
not always yield the best solution. Our experience has been
that the additional randomness that parallel MaNIS adds
to the greedy algorithm often helps gain better solutions. In
a number of datasets above, parallel MaNIS does yield the
best-quality solutions.

Second, the parallel overhead in running MaNIS is small.
This means that parallel MaNIS is likely to be faster than
DFG even on a modest number of processors. As the numbers
show, in all cases, parallel MaNIS is at most 1.8x slower
than DFG when running on 1 core, and in 3 out of the 6
cases it runs in approximately the same time.

Third but perhaps most importantly, parallel MaNIS shows
substantial speedups on all but the small datasets. The exper-
iments show that MaNIS achieves upto 23.4x speedup with
the speedup numbers ranging between 9x and 23.4x—except
for the smallest dataset webdocs which obtains 6.9x speedup.
This shows that the algorithm is able to effectively utilize
available cores except when the datasets are too small to
fully utilize parallelism (see discussion below).

To further understand the effects of the number of cores, we
study the performance of parallel MaNIS on the uk-union
dataset as the number of threads used is varied between
1 and 80 (all available threads). As Figure 3 shows, the
running time performance of our algorithm scales well with
the number of cores until at least 24 cores. After that, even
though the performance continues to improve, the marginal

Dataset Standard Greedy DFG Parallel MANIS

T1 (sec) # sets T1 (sec) # sets T1 (sec) T40h (sec) # sets

webdocs 24.2 406,399 6.46 406,340 6.66 0.96 406,343
livejournal-2008 9.80 1,120,594 4.53 1,120,543 5.58 0.62 1,120,599
twitter-2010 365 3,846,209 65.5 3,845,345 64.4 6.47 3,845,089
twitter-2009 689 5,518,039 97.3 5,516,959 87.6 7.63 5,517,864
uk-union 263 18,416,670 161 18,388,007 278 11.9 18,379,547
altavista-2002-nd 467 33,173,320 241 33,103,284 429 22.6 33,090,726

Table 2. Performance with ε = 0.01 of RAM-based algorithms: the standard greedy implementation, the disk-friendly greedy
(DFG) algorithm of Cormode et al., and our MaNIS-based parallel implementation. We show the running time (in seconds)
one core T1 and on 40 cores with hyperthreading T40h (80 threads), and the number of sets in the solutions.

benefit diminishes. Figure 4 demonstrates the break down
of sequential running time into components and the speedup
of these components on 40 cores. While most components in
the uk-union dataset have near linear speedup, the bucket
movement (i.e., filter) step, which takes 36.4% of the running
time, is bandwidth constrained and achieves a speedup of only
17, limiting the overall speed up. Further experiments with
filter and other microbenchmarks confirm this bottleneck.

For the smaller datasets, the parallel performance is ad-
ditionally constrained by the speedup of the MaNIS and
the serialMaNIS operations. The speedup of MaNIS and
serialMaNIS depends on the size of the bucket on which they
are executed. On large buckets of size exceeding 105, the
speedup is limited by the bandwidth. On smaller buckets,
the speedup is limited by the overhead of running multiple
cilk_for operations. This overhead is increasingly promi-
nent in the smaller datasets such as webdocs, in which case
MaNIS achieves a speed up of only 5.5x compared to 25.6x
on uk-union.

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80

Number of Threads

Speedup - uk-union

Figure 3. Speedup of the parallel MaNIS algorithm (i.e.,
how much faster is running the algorithm on n threads over
running it sequentially) as the number of cores used is varied.

Max Cover. In the sequential setting, stopping the stan-
dard greedy set cover algorithm when it has found k sets
gives the optimal (1− 1/e)-approximation to max k-cover.
An important feature of the parallel MaNIS algorithm is
that it can be stopped early in the same way. To see how
one might benefit from stopping the algorithm when the
algorithm has found enough sets, we record the fraction of
the total time when k sets are discovered. Presented in
Figure 5 are plots from our 3 largest datasets (by the num-

ber of edges), altavista-2002-nd, uk-union, and twitter-2009.
This experiment shows that although the rate varies between
datasets, it is clear that most of the sets are added late
in the algorithm; therefore, if the value of k of interest is
small relative to the set cover solution’s size, we can benefit
from stopping early, which can often halve the running time.
Chierichetti et. al. [12] present results for max k cover on
map-reduce, however do not report any times so we were not
able to compare.

5.3 Sequential Disk-based Performance
The second set of experiments deals with the performance of
our disk-optimized implementation in comparison with exist-
ing disk-based algorithms. We are interested in evaluating
the algorithms on the following metrics: (1) solutions’ qual-
ity and (2) running time. Since the disk-optimized versions
of both DFG and MaNIS implement the same algorithms
as their parallel counterparts, their relative performance in
terms of solutions’ quality will be identical to the study con-
ducted earlier for the parallel case. In the remainder of this
section, we focus on investigating the running time as well
as other performance characteristics of the disk-optimized
MaNIS implementation.

Evaluation Setup. Our disk experiments were performed
on a 4-core Intel machine although we only make use of a
single core running at 2.66 Ghz. The machine is equipped
with 8 GBytes of RAM and an Intel X25-M 160 GBytes SSD
disk3 (used both for input and as scratch space). There is a
separate magnetic disk which we keep the OS Linux 2.6.38
(Ubuntu 11.04) and other system files. We compiled our
programs with g++ 4.5.2 using the optimization flag -O3.

We artificially limited the RAM size available to the set
cover process to 512 MBytes and carefully control all disk-
access buffers to use only these 512 MBytes. This may seem
unrealistic at first, but this controlled setup models the types
of machines available as embedded devices and computing
nodes in low-power clusters (e.g., [1]) and provides a testbed
for understanding the performance of these algorithms on
such devices.

Table 3 reports the performance of the disk-based algo-
rithms when run with ε = 0.01. On the larger graphs, the
DFG algorithm did not complete within 40 hours. On the
smaller sets, the disk based MaNIS is substantially faster
(about 4x for webdocs and 39.6x for livejournal-2008). The

3Per Intel’s specification, it has sustained sequential read and
write bandwidths of 250 MB/s and 100 MB/s, resp.

 0

 20

 40

 60

 80

 100

webdocs(6.66s) twitter-2010(87.7s) uk-union(260s)

P
e
rc

e
n
ta

g
e
 o

f
T

im
e

Datasets

5.5x

5.7x

30.6x

16x

14x

9.5x

27.2x

25.6x

17x

init
bucket

manis
serial manis

bucket movement
other

Figure 4. Timings and speedups of different components of the parallel set cover algorithms on webdocs, twitter-2009,
uk-union. The sequential running time is shown next to the dataset’s label, and the speedup of each major component is
given next to the corresponding segment in the plot.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Value of k

Fraction of Time - altavista-2002-nd

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Value of k

Fraction of Time - uk-union

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Value of k

Fraction of Time - twitter-2009

Figure 5. Max k-cover performance: The fraction of time spent to find the first k sets as the value of k is varied.

timing numbers may appear to be irregular, but a closer look
at the results reveals patterns worthwhile mentioning:

When the bitmap representing the elements does not fully
stay in fast memory (i.e., cache or RAM), the number of
passes over the bitmap and the bitmap size crucially deter-
mine the performance of both algorithms. In DFG, which
consults the bitmap every time it considers a set, this is
lower-bounded by the number of sets in the output, whereas
in disk MaNIS, which batches “requests” to look up the
bitmap and reduces them to one pass over it per MaNIS
round, this number is the total number of MaNIS rounds
summed across all buckets. This explains the difference in
running-time patterns between the two algorithms on web-
docs and livejournal-2008. For this reason also, the two
Twitter datasets take roughly the same time to run disk
MaNIS despite significant differences in the number of sets
in the solutions produced.

5.4 Effects of The Accuracy Parameter
In theory, the dependence on ε in the work bound is inversely
proportional to log3(1 + ε), which, for small ε, is roughly
O(1/ε3). This seems alarming because as we decrease ε (i.e.,
increase accuracy), 1

ε3
grows rather rapidly, rendering the

algorithm unusable in no time; however, in practice, the
situation is much better. As we decrease ε, we will observe
more buckets but an even larger fraction of these buckets
will be empty, reducing the efforts needed to run MaNIS to
process them and counteracting the increase in the number

Algorithm ε = 0.1 0.05 0.01 0.001

Disk MANIS 271 310 481 891
Parallel MANIS 0.36 0.47 0.96 2.06
of sets 406,406 406,359 406,343 406,338

Table 4. Performance of MaNIS-based algorithms on web-
docs (in seconds) as ε is varied.

of buckets. Table 4 shows the effects of ε on webdocs for
both the disk-optimized and parallel versions.

The numbers show that increasing the accuracy from ε =
0.1 to 0.001 (2 more digits of accuracy) increases the running
time by less than 3x for the disk version and 6x for the parallel
version. This trend seems to generalize across the datasets
we have. More interesting, however, is the observation that ε
only has small effect on the solutions’ quality. Our experience
on the datasets we have used is that we benefit more from
spending computation time on different random priority
orderings than adjusting ε to increase accuracy.

6. CONCLUSION
We presented a parallel cache-oblivious set-cover algorithm
that has essentially the same approximation guarantees as the
standard greedy algorithm. We implemented slight variants
of the theoretical algorithm optimized for different hardware
setups and provided experimental evaluation showing non-
trivial speedups over existing algorithms while yielding the
same solution’s quality.

Dataset DFG Disk MANIS

Time # of sets Time # of sets

webdocs 32m50s 406,340 481s 406,367
livejournal-2008 3h5m 1,120,543 280s 1,120,599
twitter-2010 > 40 hrs - 55m2s 3,845,089
twitter-2009 > 40 hrs - 1h11m 5,517,864
uk-union > 40 hrs - 6h49m 18,379,547
altavista-2002-nd > 40 hrs - 13h27m 33,090,726

Table 3. Performance with ε = 0.01 of disk-based algorithms: the disk-friendly greedy (DFG) algorithm of Cormode et al.,
and our disk-based MaNIS implementation. We show the running time and the number of sets in the solutions.

Acknowledgments. This work is partially supported by
the National Science Foundation under grant number CCF-
1018188 and by generous gifts from IBM and Intel Labs
Academic Research Office for Parallel Algorithms for Non-
Numeric Computing. We thank the SPAA reviewers for their
comments that helped improve this paper.

7. REFERENCES
[1] David G. Andersen, Jason Franklin, Michael Kaminsky,

Amar Phanishayee, Lawrence Tan, and Vijay
Vasudevan. FAWN: A fast array of wimpy nodes. In
Proc. 22nd ACM Symposium on Operating Systems
Principles (SOSP), Big Sky, MT, October 2009.

[2] Bonnie Berger, John Rompel, and Peter W. Shor.
Efficient NC algorithms for set cover with applications
to learning and geometry. J. Comput. Syst. Sci.,
49(3):454–477, 1994.

[3] Guy E. Blelloch, Jeremy T. Fineman, Phillip B.
Gibbons, and Julian Shun. Internally deterministic
parallel algorithms can be fast. In PPOPP, pages
181–192, 2012.

[4] Guy E. Blelloch, Jeremy T. Fineman, Phillip B.
Gibbons, and Harsha Vardhan Simhadri. Scheduling
irregular parallel computations on hierarchical caches.
In SPAA, pages 355–366, 2011.

[5] Guy E. Blelloch, Phillip B. Gibbons, and
Harsha Vardhan Simhadri. Low-depth cache oblivious
algorithms. In SPAA, 2010.

[6] Guy E. Blelloch, Anupam Gupta, Ioannis Koutis,
Gary L. Miller, Richard Peng, and Kanat Tangwongsan.
Near linear-work parallel SDD solvers, low-diameter
decomposition, and low-stretch subgraphs. In SPAA,
pages 13–22, 2011.

[7] Guy E. Blelloch, Richard Peng, and Kanat
Tangwongsan. Linear-work greedy parallel approximate
set cover and variants. In SPAA, pages 23–32, 2011.

[8] Paolo Boldi, Marco Rosa, Massimo Santini, and
Sebastiano Vigna. Layered label propagation: A
multiresolution coordinate-free ordering for compressing
social networks. In Proceedings of the 20th international
conference on World Wide Web. ACM Press, 2011.

[9] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. A
large time-aware graph. SIGIR Forum, 42(2):33–38,
2008.

[10] Paolo Boldi and Sebastiano Vigna. The WebGraph
framework I: Compression techniques. In Proc. of the
Thirteenth International World Wide Web Conference
(WWW 2004), pages 595–601, Manhattan, USA, 2004.
ACM Press.

[11] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi,
Michael Mitzenmacher, Alessandro Panconesi, and
Prabhakar Raghavan. On compressing social networks.
In KDD, pages 219–228, 2009.

[12] Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins.
Max-cover in map-reduce. In Proceedings of the 19th
international conference on World wide web, WWW
’10, pages 231–240, New York, NY, USA, 2010. ACM.

[13] V. Chvatal. A greedy heuristic for the set-covering
problem. Mathematics of Operations Research, 4(3):pp.
233–235, 1979.

[14] Graham Cormode, Howard J. Karloff, and Anthony
Wirth. Set cover algorithms for very large datasets. In
CIKM, pages 479–488, 2010.

[15] R. Dementiev, L. Kettner, and P. Sanders. STXXL:
standard template library for XXL data sets. Software:
Practice and Experience, 38(6):589–637, 2008.

[16] Uriel Feige. A threshold of lnn for approximating set
cover. J. ACM, 45(4):634–652, 1998.

[17] Matteo Frigo, Charles E. Leiserson, Harald Prokop,
and Sridhar Ramachandran. Cache-oblivious
algorithms. In FOCS, 1999.

[18] B. Goethals. Frequent itemset mining dataset
repository. http://fimi.ua.ac.be/data/.

[19] David S. Johnson. Approximation algorithms for
combinatorial problems. J. Comput. System Sci.,
9:256–278, 1974.

[20] U. Kang, Brendan Meeder, and Christos Faloutsos.
Spectral analysis for billion-scale graphs: Discoveries
and implementation. In PAKDD (2), pages 13–25, 2011.

[21] R. M. Karp. Reducibility Among Combinatorial
Problems. In R. E. Miller and J. W. Thatcher, editors,
Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972.

[22] Haewoon Kwak, Changhyun Lee, Hosung Park, and
Sue B. Moon. What is Twitter, a social network or a
news media? In WWW, pages 591–600, 2010.

[23] Charles E. Leiserson. The Cilk++ concurrency
platform. J. Supercomputing, 51(3), 2010. Springer.

[24] Sridhar Rajagopalan and Vijay V. Vazirani.
Primal-dual RNC approximation algorithms for set
cover and covering integer programs. SIAM J. Comput.,
28(2):525–540, 1998.

[25] Johannes Singler, Peter Sanders, and Felix Putze. The
multi-core standard template library. In Euro-Par,
pages 682–694, 2007.

http://fimi.ua.ac.be/data/

	Introduction
	Preliminaries and Notation
	Algorithm Design
	I/O Efficient Algorithm

	Implementation
	Evaluation
	Experimental Setup
	Parallel Performance
	Sequential Disk-based Performance
	Effects of The Accuracy Parameter

	Conclusion
	References

