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ABSTRACT
We present efficient parallel streaming algorithms for fundamental

frequency-based aggregates in both the sliding window and the
infinite window settings. In the sliding window setting, we give a
parallel algorithm for maintaining a space-bounded block counter
(SBBC). Using SBBC, we derive algorithms for basic counting,
frequency estimation, and heavy hitters that perform no more work
than their best sequential counterparts. In the infinite window setting,
we present algorithms for frequency estimation, heavy hitters, and
count-min sketch. For both the infinite window and sliding window
settings, our parallel algorithms process a “minibatch” of items using
linear work and polylog parallel depth. We also prove a lower bound
showing that the work of the parallel algorithm is optimal in the case
of heavy hitters and frequency estimation. To our knowledge, these
are the first parallel algorithms for these problems that are provably
work efficient and have low depth.

Categories and Subject Descriptors
H.1.0 [Information Systems]: Models and Principles—General;

F.2.0 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity—General

Keywords
parallel streaming; stream processing; heavy hitter; basic counting

1. INTRODUCTION
Today’s applications need to monitor massive volumes of data

and derive insights from it in real-time. In such applications, it is
natural to employ parallel computing to improve processing through-
put. However, parallel stream monitoring needs fundamentally new
algorithms, and there does not seem to have been much work in this
direction so far. In this work, we consider the design and analysis of
parallel algorithms for processing a high-velocity data stream on a
shared-memory machine (e.g., a multicore machine).

Following the paradigm used by streaming systems such as Apache
Spark [ZDL`13], we assume the model of a discretized stream. The
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system receives data from one or more sources and divides the result-
ing stream into “minibatches”. The streaming algorithm processes
a minibatch, potentially using parallel processing, and updates its
state. After processing one minibatch, the system moves onto the
next minibatch. This model of processing elements has the follow-
ing advantages: (1) Each minibatch can potentially be processed in
parallel without a sequential bottleneck, whether in data ingestion
or in processing, and (2) the view of a user of the system is simple.
Queries can be answered on data received until, and including the
most recent mini-batch that was processed.

While there is a long line of research on sequential streaming
algorithms for a variety of problems, and empirical and experimental
work on parallel streaming algorithms, basic questions on algorithms
for parallel stream processing remain open. This work initiates a
systematic study of parallel streaming algorithms for fundamental
aggregates, with a rigorous analysis of both the algorithms’ cost and
accuracy guarantees.

To process a stream in parallel, one approach is to use inde-
pendent per-processor data structures (see Figure 1). Suppose
there are p processors; the stream S is partitioned into sub-streams
S1,S2, . . . ,Sp, one per processor. Each processor i processes Si and
maintains a data structure Di local to processor i. The different data
structures Di, i “ 1 . . . p are merged together periodically, or when-
ever a query is posed. For this approach to work, the data structures
should be mergeable (see, e.g., [ACH`13]). Even if mergeable data
structures exist for a given aggregate, there are inherent shortcom-
ings of the independent data structure approach in our context. In
particular, the approach does not take advantage of available shared
memory, and the merging step can be a sequential bottleneck. See
Section 5.4 for further discussion of the independent data structure
approach for heavy hitter identification.

We take a different approach to processing a stream in parallel.
Instead of a per-processor data structure, we use a single shared data
structure (see Figure 1) that the processors update cooperatively
update in parallel . Updates and queries can be interleaved, and
our algorithms require no locking. This approach has the following
advantages when compared with the independent data structure
approach: (1) the total workspace is smaller than the independent
data structure approach. For instance, in the case of approximate
heavy hitter identification, a shared data structure takes the same
total memory as a sequential algorithm such as [MG82], while the
independent data structure approach requires memory p times larger.
(2) There is no need for a further merge step to combine different
data structures. This eliminates a sequential bottleneck, and allows
polylogarithmic depth parallel algorithms.

1.1 Our Contributions
We present efficient parallel algorithms for estimating fundamen-

tal frequency based aggregates on a stream in the infinite window
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Figure 1: Two approaches to parallel streaming algorithms for a
shared memory multiprocessor.

and the sliding window models. In the infinite window model, the
aggregate is desired over the entire stream from the start, whereas in
sliding window model, the aggregate is desired only over the most
recent elements of the stream. We consider the count-based sliding
window, defined as the n most recent elements in the stream. We
assume that n is much larger than the size of a minibatch, and that it
is undesirable to store the entire window in the main memory.

Our algorithms operate in the work-depth model assuming an
underlying CRCW machine. As is standard, work is the total op-
eration count of an algorithm, and depth, traditionally known as
“parallel time”, is the longest chain of dependencies within a parallel
computation. Throughout, we measure space in terms of words,
unless stated otherwise.

We derive algorithms for the following problems:
—Basic Counting: On a stream of bits, maintain the number of 1s
within a count-based sliding window of size n. Though easy in the
model of infinite window, this aggregate is non-trivial in the sliding
window model, and is a fundamental problem; the work of Datar
et al. [DGIM02] show how to reduce other aggregates on a sliding
window, such as approximate histograms, hash tables, and `p norms
of vectors to basic counting on a bit stream.
—Sum: This is a generalization of basic counting. On a stream
of non-negative integers, maintain the sum of the elements within
a sliding window. The maintenance of the mean of non-negative
integers can be reduced to the sum.
—Frequency Estimation: Approximately track the frequency of
items either within an infinite window or a sliding window.
—Heavy Hitters: Continuously track φ-heavy hitters in a stream.
This is a fundamental problem in stream monitoring, and has re-
ceived widespread attention due to its importance in monitoring
applications, including network monitoring [EV03, CH10]. We con-
sider tracking heavy hitters in both the infinite window and sliding
window settings.
—Count-Min Sketch [CM05]: While not an aggregate in itself, this
data structure is a useful summary of frequency-based properties
of a stream, and can be used for answering a variety of queries on
the input stream, including point and range queries, quantiles, and
heavy hitters.

Except for count-min sketch, our algorithms provides a notion

of deterministic guarantee, namely an ε-approximation, where the
estimate has worst-case relative error at most ε. However, our
algorithms are randomized; hence, we state their work and depth
bounds in expectation.

Our algorithms are work efficient; i.e., they perform no more
work, up to constant factors, than their most efficient sequential
counterparts. They also have low depth, which is polylogarithmic
in the input size and in the workspace, for almost all cases. Their
memory requirements are also of the same order as their sequen-
tial counterparts 1. To our knowledge, these are the first parallel
streaming algorithms that simultaneously have all these properties.
Previous work on parallel and distributed streaming algorithms have
mostly focused on the case of independent data structures and are
unable to achieve a parallel depth that is smaller than the size of the
data structure. In the case of frequency estimation and heavy hitters,
we are able to, for the first time, break the barrier of Ωp1{εq for the
parallel depth.

At a high level, the difference between the infinite window case
and the sliding-window case can be seen as keeping a regular counter
versus keeping a counter that slides with the window. We design a
synopsis data structure, called a space-bounded block counter, that
maintains an approximate count of the number of 1s in a sliding
window via deterministic sampling, while supporting parallel in-
gestion of a sequence of bits, which we use internally to process
a minibatch. We use the parallel space-bounded block counter as
a building block in algorithms for basic counting and sum over a
sliding window, and in frequency estimation and heavy hitters.

1.2 Related Work
There have been several related works on parallel and distributed

processing of a data stream, but they have usually not considered
the (theoretical) efficiency of parallel algorithms for the problem.

Work on the distributed streaming model, both one-shot pro-
cessing [GT01, GT04], as well as continuous monitoring [Cor13,
CMYZ12, TW11, ABC09], considers computation of aggregates
over the union of multiple distributed streams that are observed by
different processors. A significant difference between distributed
stream processing and parallel stream processing is that in the dis-
tributed case, there are physically different input streams that are
observed and processed by geographically different processors. But
in the parallel case, the stream is processed by multiple processors
only to improve the throughput. In the distributed streams model,
the focus is on minimizing the communication between processors,
while in the shared-memory parallel case, the focus is more on the
processing efficiency.

Das et al. [DAAE09] consider tracking frequent elements in a
stream using a shared memory multicore machine. Their work uses
shared data structures among multiple threads, and supports our
approach of using shared data structures as opposed to independent
per-processor data structures. However, unlike our work, they do
not provide theoretical guarantees about the parallel performance
of their algorithms. In particular, they do not have an analysis of
the cost of their parallel algorithm. Cafaro and Tempesta [CT11]
present a parallel algorithm for maintaining frequent elements in a
stream; this algorithm uses the independent data structure approach,
and employs a sequential merge step, so the depth of the algorithm is
at least Ωp 1

ε2 q, while our algorithm for infinite window has a depth
that is polylogarithmic in 1

ε
. Other works on parallel streaming

algorithms for frequent items includes [ZSZ`13], and our work
differs in providing provable guarantees on the cost.

1The exception is that our algorithm for the Sum is a factor of log R
worse in work and memory than the best sequential algorithm.



Sequential streaming algorithms for basic counting on a sliding
window were first studied by [DGIM02], and there has been much
follow up work since then, including [GT04, LT06a, XTB08, BO10].
We do not attempt a detailed survey of the prior sequential algo-
rithms in this area, but to our knowledge, there has been no work on
parallel algorithms with a provable guarantee on both performance
and accuracy. There are many sequential streaming algorithms for
finding frequent elements, including counter-based algorithms such
as the Misra-Gries algorithm [MG82], Lossy Counting [MM02],
and Space-Saving [MAE06], and sketch-based algorithms, such
as Count-Sketch [CCFC02] and Count-Min sketch [CM05]. Fre-
quent elements over sliding windows has been considered in [LT06b,
HLT10].

2. PRELIMINARIES AND NOTATION
Throughout the paper, let rns denote the set t1, . . . , nu and denote

by rα, βs the interval tx P R | α ď x ď βu. A sequence is written as
xx1, x2, . . . , x|X|y, and for a sequence X, the i-th element is denoted
by Xi or Xris. We say that an event happens with high probability
(whp) if it happens with probability at least 1´ n´Ωp1q.

A streamS is an infinite sequence of elements e1e2e3 . . . , where ei

belongs to a universeU. When we want to emphasize the universe,
we say that S is aU-stream. A stream segment is a finite sequence
of consecutive elements of a stream. For example, a minibatch is a
stream segment. In many cases, we are only interested in prefixes of
the infinite stream. DefineSt “ e1e2 . . . et. On this stream, a window
of size n, denoted byWnpStq, is the segment of St consisting of the
latest n entries, i.e., et´n`1, . . . , et.

Often in this paper, we deal with t0, 1u-streams, which we also
refer to as binary streams. A compacted stream segment (CSS) is an
encoding of a segment of a binary stream where only the positions
of the 1 bits and the length of the segment itself are recorded. In
particular, for a binary stream segment T , the CSS of T , denoted
by CSSpTq is an ordered pair p`, sq, where ` is the length of the
segment, and s is a sequence of length }T}0, where si stores the
position of the i-th 1 in the segment T . Here, the 0-th norm }¨}0

denotes the number of non-zero entries in a stream segment. Given
a binary stream, it is easy to construct its CSS using standard tech-
niques [JáJ92]:

Lemma 2.1 The CSS of a binary stream segment T can be com-
puted in Opnq work and Oplog nq depth, where n is the length of the
segment T .

We will also rely on the following result:

Theorem 2.2 (Parallel Integer Sort [RR89]) There is an algorithm
intSort that takes a sequence of integer keys a1, a2, . . . , an, each a
number between 0 and c ¨ n, where c “ Op1q, and produces a sorted
sequence in Opnq work and polylogpnq depth.

Linear-Work Histogram: Common to many of our algorithms is a
routine for determining the frequencies of the elements in a stream
segment, a problem which we call histogram construction. The
following theorem shows how to do this for a stream segment of
length µ in Opµq work and Oppolylogpµqq depth.

Theorem 2.3 There is an algorithm buildHist that takes a se-
quence a1a2 . . . aµ, ai P U and produces a sequence xpelt “
¨, freq “ ¨qy of distinct elements and their frequencies, reported in
any order. Further, the algorithm takes Opµqwork and Oppolylogpµqq
depth.

Proof. Let h : U Ñ t1, . . . ,Ru, where R “ Opµq, be a hash
function. It suffices to use, for example, a Oplog µq-wise indepen-
dent family. The algorithm proceeds as follows: First, it hashes each

ai using the hash function hp¨q and buckets elements with the same
hash values together. This can be accomplished using intSort in
Opµq work and depth as the range of the hash function is R “ Opnq.

Suppose the nonempty buckets are B1, . . . , Bt, where Bi contains
the elements which hash to value i. We know that all elements of
the same key are in the same bucket and we will process each of
these buckets in parallel. That is, we call collectBinpBiq for each
i, in parallel, and concatenate their results together.
def collectBinpBq:

(1) If B is empty, return an empty sequence.
(2) Pick an arbitrary element e P B.
(3) Let ne be the number of times e occurs in B.
(4) Let B1 be B without any occurrences of e
(5) return collectBinpB1q `` xelt “ e, freq “ ney.

Correctness of this algorithm is straightforward and its perfor-
mance depends essentially on how many distinct elements fall into
the same bucket. More specifically, each pass through Steps 2–4
requires at most Op|Bi|q work and Oplog |Bi|q ď Oplog µq depth.
Hence, in terms of work, the total cost across all buckets is at most

W ď
ÿ

e: unique elts

rene,

where ne is the number of occurrences of item e and re is the number
of unique elements in the bucket that e hashes to. We conclude
that ErWs is Opµq because Erres ď µ{R “ Op1q and

ř

e ne “ µ.
As for depth, the overall depth is D ď maxi tri log µu, where ri is
the number of unique elements in Bi. Since ri ď Oplog µq whp,
by balls-and-bins analysis, we have D ď Oplog2 µq whp. This
concludes the proof.

3. SPACE-BOUNDED BLOCK COUNTER
In this section, we describe a data structure for maintaining an

approximate count of the number of 1s (i.e., 1-bits) in a sliding
window. This data structure is an important building block of the
algorithms presented later in this paper.

In a nutshell, for a parameter λ that controls the accuracy-vs.-
space tradeoff, the data structure consumes roughly m{λ space and
gives an additive-error guarantee of λ, where m is the number of
1s in the sliding window. We achieve this tradeoff by devising a
parallel variant of the deterministic sampling scheme of Lee and
Ting [LT06b, LT06a]. In addition, this data structure has a means to
limit the total space consumption to a preset limit σ.

3.1 γ-Snapshots
We begin by reviewing an elegant deterministic-sampling synop-

sis due to Lee and Ting [LT06b, LT06a] that forms the basis of our
parallel counter data structure. Let St “ xb1, b2, . . . , bty be a stream
and let ωi be the position of the i-th 1 in the stream. In γ-snapshots,
the stream is subdivided into equal-sized blocks with γ elements
each. That is, b1, . . . , bγ is block B1. Then, bγ`1, . . . , b2γ is block
B2. In general, the range bpk´1qγ´1, . . . , bkγ is block Bk. We write
βpiq for the block number which bi belongs to.

To build a snapshot, the scheme specifies deterministically which
of these blocks are sampled We provide a slightly different view
from [LT06b] although it is equivalent to the original definition:

Definition 3.1 (γ-Snapshot) Let n be the sliding-window size. A γ-
snapshot for the stream St “ xb1, b2, . . . , bty, denoted by SSγ,npStq,
is an ordered pair pQ, `q where

(1) Q “ tβpωγiq : block Bβpωγiq overlaps with or falls in the
window bt´n`1, . . . , btu; and
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Figure 2: An illustration of γ-snapshot for a window of size 12 and γ “ 3, showing the 1 bits located at multiple of γ “ 3 indices. This
results in pQ “ t4, 7u, ` “ 1q.

(2) if p˚ “ maxtωγi : ωγi ď tu, then ` is the number of 1s in the
window after p˚ (i.e., how many 1s in bmaxpp˚`1,t´n`1q, . . . , bt)

Figure 2 shows γ-snapshot in action, showing the 1 bits located at
multiple of γ “ 3 indices, the block ids, and the resulting snapshot.

As Lee and Ting [LT06b] show, a γ-snapshot has the following
guarantees:

Lemma 3.2 ([LT06b]) Let SSγ,npStq “ pQ, `q. Then,

valpSSγ,npStqq
def
“ γ|Q| ` `

satisfies

m ď valpSSγ,npStqq ď m` 2γ,

where m the true number of 1s in the windowWnpStq “ bt´n`1, . . . , bt.
Furthermore, ` ă γ and |Q| ď Opm{γq.

We represent a snapshot SSγ,npStq “ pQ, `q as a sequence list-
ing the elements of Q and the number `. In this representation,
valpSSγ,npStqq takes Op1q work to evaluate because val only needs
to know the size of Q and the value of `. Furthermore, shrinking the
window is easy in this representation: given a snapshot for a size-n
window, we can easily construct a snapshot for a smaller-sized win-
dow n1, simply by filtering out samples that are “too old” for n1. We
have the following:

Lemma 3.3 There is an algorithm shrinkprq that takes as in-
put a γ-snapshot SSγ,npStq “ pQ, `q and produces a γ-snapshot
SSγ,n´rpStq in Op|Q|q work and Oplog |Q|q depth.

3.2 Maintaining Space-Bounded Counter
We present the design and analysis of a parallel space-bounded

block counter, a data structure that maintains internally a γ-snapshot
while taking advantage of parallelism to support its operations. We
describe an interface and the corresponding guarantees in the fol-
lowing theorem:

Theorem 3.4 Let σ, λ ą 0 be parameters and n be the window size.
There is a data structure pσ, λq-space bounded block counter, or a
pσ, λq-SBBCpnq, supporting operations
‚ newpq – create a new instance
‚ advancepTq – incorporate a minibatch encoded as a CSS into

the data structure
‚ querypq – retrieve a γ-snapshot for the window. Specifically,

the return value of query satisfies
– If it returns OVERFLOWED, then m ě σ ¨ λ;
– Otherwise, it returns SSλ{2,npStq.

‚ decrementprq – changes the latest r 1s to 0, effectively decre-
menting the counter by r (valid when the counter is not “over-
flowed” and the counter value is positive)

where m is the actual number of 1s in the window. Furthermore,
the space consumption is at most Opmintσ,m{λuq. The operation

advance takes Opmintσ,m{λu ` |T |{λq work; and decrement
takes Opm{λq work. The other operations take constant work. Every
operation has at most polylog depth (polylog in the size of the data
structure and the input).

For a SBBC Γ, let the value of Γ be defined as valpΓ.querypqq or
undefined when the counter “overflows.” Then, as a direct conse-
quence of Theorem 3.4, we have the following corollary:

Corollary 3.5 If m̂ is the value of a counter, then m ď m̂ ď m` λ,
where m is the actual number of 1s inWnpStq.

We prove this theorem by providing an implementation. An
instance of pσ, λq-SBBCpnq maintains a λ

2 -snapshot and certain de-
marcation information. It is kept as a tuple pt, r,SS “ SSλ{2,rpStqq.
The main component of this tuple is the λ

2 -snapshot SS. But we
need the other two components track the coverage of the snap-
shot. Specifically, the numbers t and r indicate that the snap-
shot SS is SSλ{2,rpStq—i.e., representing the windowWrpStq “

tbt´r`1, . . . , btu.
Importantly, even though we instruct the data structure to track

a window of size n, it is possible that due to the capacity limit σ,
the snapshot cannot cover the whole size-n window; it has been
truncated to a smaller window size, indicated by r.

As such, the operation new is straightforward. The operation
query returns OVERFLOWED if r ă n or otherwise, returns SS.
The operation decrementprq updates the snapshot SS as follows:
Suppose the snapshot is pQ, `q. If r ă `, update SS to pQ, ` ´ rq.
Otherwise, update SS to pQ1, `1q, where Q1 drops the latest (i.e., the
largest) r

r´`
λ

s elements from Q and `1 “ λ ¨ r r´`
λ

s´ r.
We devote the rest of this section to advance and analyzing the

data structure’s properties. Before we describe an implementation
of advance, notice that in the definition of γ-snapshot, we are only
interested in the positions of every γ-th one (i.e., ω1, ωγ, ω2γ, . . . ).
Therefore, if the snapshot maintained is pQ, `q, then the next 1 that
would be of interest (be a multiple of γ) is the p λ2 ´ `q-th 1 in the
stream segment being added. We implement advancepTq, where
T “ pT`,Tsq is the new stream segment encoded as CSS, by first
extending pQ, `q to a snapshot for a window of size r ` T` then
shrinking it back to a window of size n or smaller (depending on the
size limit σ).

Hence, to implement advancepTq, we will look at Tsr
i¨λ
2 ´ `s

for i “ 1, 2, . . . . Then, We use βp¨q to compute the block id’s and
append these to Q, adjusting ` accordingly. Subsequently, we use
shrink to make the window size n or some smaller r if the number
of entries still is at least 2σ` 1.

Work and Depth Analysis: Clearly, both new and query take
constant work and depth. The operation decrement can be imple-
mented by going over the sequence Q of length at most Opm{λq,
so the work is Opm{λq and the depth is logpm{λq. Moreover, the
operation advance looks at every λ{2-th element of T to deter-
mine the block id’s to append to Q, taking OpT`{λq work. Note



that the sequence Q before shrinking has length at most Λ “

mintσ,m{λu ` T`{λ, so shrinking takes at most OpΛq work. All
these operations require at most OplogpT` `mintσ,m{λuqq depth.

Finally, we show that if query returns OVERFLOWED, the actual
number of 1s in the windowWnpStq is at least σ¨λ. In the advance
operation, the snapshot is trimmed to a window size smaller than n if
the sequence Q for the window of size n has at least 2σ`1 elements.
By Lemma 3.2, we know that m ě γp2σ` 1q ´ 2γ “ λ ¨ σ.

4. BASIC COUNTING AND SUM
As the first application of SBBC, we consider basic counting,

which asks for a space-efficient data structure to estimate, at any
moment, the number of 1s in either a sliding window of interest,
or the stream observed thus far. While trivial in the case of infi-
nite window, the problem is more involved in the case of sliding
windows, and has been extensively studied with many applications.
We present a parallel streaming algorithm for basic counting on a
sliding window. For a sliding window of size n, this problem seeks
an approximation with relative error at most ε to the number of 1s
in the sliding window WnpStq. More specifically, we prove the
following theorem:

Theorem 4.1 Let ε ą 0 and n be a fixed window-size. There is a
parallel data structure for basic counting on a sliding window with
a relative error at most ε requiring S “ Opε´1 log nq space such
that incorporating a minibatch of length µ takes OpS `µq work and
OppolylogpS , µqq depth.

This means that if the minibatch is at least ΩpS q long, which is
likely, the average per-element update cost is Op1q.

To prove this theorem, we will rely on the space-bounded block
counters from Section 3; however, such a counter provides an addi-
tive guarantee whereas the basic counting problem seeks a relative
guarantee. We need a bit more work because these types of guar-
antees behave differently for different ranges of values: an SBBC
precise enough to ε-estimate a small count of 1s would consume
too much space than we can afford, and a small-footprint SBBC
sufficient to ε-estimate a large count of 1s would be too coarse for
tracking a small count of 1s.

For this, we keep Oplog nq different counters to cover the whole
range of possible values (an integer between 0 and n) using a ge-
ometric scale, an idea also used in prior algorithms. Further, we
set an upper bound on how much space each counter can consume.
This not only controls the total space consumption but also serves
to provide a coarse lower bound on the number of 1s in the window
(by determining which counters have exceeded the space quota).
Then, to incorporate a minibatch, we advance all the SBCCs simul-
taneously. To answer a query for the count, we simply look for the
most precise SBBC that has not overflowed and return its estimate.
We formalize this idea as follows:

Proof of Theorem 4.1. Fix ε ą 0 and n ą 0. Further, let k “
min ti | εn{2i ă 1u. Following Lee and Ting [LT06a], we main-
tain k` 1 SBBCs Γ0,Γ1, . . . ,Γk such that Γi is a pσi, λiq-SBBCpnq,
where σi “ 2{ε and λi “ εn{2i. Hence, it follows directly from
Theorem 3.4 that the total space requirement is k ¨ 2

ε
“ Opε´1 log nq.

Next, we consider the cost of handling a minibatch and the accuracy
of our estimate.

When a minibatch T , |T | “ µ, arrives, we incorporate it by calling
advancepTq on all k SBBCs in parallel. Because by Theorem 3.4,
the depth of advance is polylogarithmic, the depth of incorporating
a minibatch remains polylogarithmic. Furthermore, since the work

of advance on Γi is Opσi`µ{λiq, the total work across k SBCCs is

k
ÿ

i“0

ˆ

2
ε
`

µ

pn{2iq ¨ ε

˙

ď Opε´1 log n` µq “ OpS ` µq,

where we note that
řk

i“0
1

pn{2iq¨ε
ď

ř

jě0 1{2 j ď 2.
To analyze the accuracy of the estimate, we first derive a lower

bound on the number of 1s in the sliding window. Let i˚ be the
largest (i.e., the finest) index i where Γi does not return OVER-
FLOWED. We note that this i˚ exists because the number of 1s
in the window is at most n which never “overflows” Γ0 as σ0λ0 “

2n ą n. Then, Γi˚`1 returns OVERFLOWED and by the property
of query (Theorem 3.4), the number of 1s in the window m satisfies
m ě σi˚`1λi˚`1 “

2
ε
¨ εn

2i˚`1
“ n{2i˚ .

In addition, querying Γi˚ returns a snapshot SS where

m ď valpSSq ď m` λi˚ ď m` εn
2i˚

by Corollary 3.5. But m ě n{2i˚ , so m ď valpSSq ď m ` εm “
p1` εqm, which concludes the proof.

4.1 Sum
We discuss a direct application of the basic counting data structure.

Given a stream S of non-negative integers (i.e., bi P t0, 1, . . .Ru),
the sum problem is to maintain the sum of the most recent n items in
the stream. This problem has been considered in the past [DGIM02,
GT04], for which an algorithm for the single stream case is known:
Gibbons and Tirthapura [GT04] present an ε-approximation to the
sum using space Opε´1 log nq words and constant processing time
per item 2.

For incoming value x, 0 ď x ď R, let xi denote the i-th least
significant bit in the binary representation of x, i.e. x0 is the least
significant bit, x1 is the bit to the left of x0, and so on. We maintain
multiple basic counting data structures (Theorem 4.1), Di for i “
0, . . . , log R, where Di counts the number of 1s among the xis for
all x within the sliding window. A minibatch B “ s1, s2, . . . , sµ
of length µ is processed as follows. In parallel, we compute the
binary sequences B1, B2, . . . , Blog R, where Bi “ xsi

1, s
i
2, . . . , s

i
µy. For

i “ 1, . . . , log R, in parallel, sequence Bi is inserted into basic
counter Di. Since we are able to estimate the total number of 1-bits
in each bit position i to an ε-relative error using counter Di, we
are able to estimate the sum also to within an ε-relative error, by
computing the weighted sum of the basic counts of the different data
structures, where the count from Di is assigned a weight of 2i.

The total depth of this algorithm is of the same order as the depth
of the basic counter, since the only additional operations are to
extract the bit si

j from element s j, which can be done in Op1q time,
and to finally add the results of all data structures Dis, which can be
done in parallel in Oplog log Rq depth. The total work of the above
algorithm is Oplog Rq times the work of the basic counter, and the
total workspace used is also Oplog Rq times the workspace of the
parallel basic counter.

Theorem 4.2 Let ε ą 0 be given and n be a fixed window-size.
There is a parallel data structure for continuously maintaining the
sum of non-negative integers chosen from t0, . . . ,Ru on a sliding
window with relative error at most ε requiring S “ Opε´1 log n log Rq
space such that incorporating a minibatch of length µ takes OppS `
µq log Rq work and OppolylogpS , µqq depth.

2The space bound assumes that log n “ Θplog Rq



5. FREQUENCY ESTIMATION AND HEAVY
HITTERS

We now consider two related problems, frequency estimation, and
heavy hitters. Suppose the input is a stream of elements, where each
element is an item identifier. Let N denote the number of elements,
and fe the number of occurrences of item e in the stream so far.
Given a parameter ε, 0 ă ε ă 1, the frequency estimation task is to
maintain for every item e, an estimate f̂e such that fe´εN ď f̂e ď fe.

In the related problem of identifying heavy hitters from a stream,
there are two parameters φ, 0 ă φ ă 1, a threshold for frequency,
and ε, 0 ă ε ă φ, a threshold for error, and the task is to output all
elements e such that fe ě φN, and output no element e such that
fe ď pφ´ εqN. If a streaming algorithm can solve frequency esti-
mation, then it can solve heavy hitter identification—the algorithm
can simply output every element e such that f̂e ě pφ´ εqN, and it
will satisfy the conditions required for heavy hitter identification. In
the remainder of this section, we focus on frequency estimation; all
our results are applicable to heavy hitter identification.

5.1 Misra-Gries Summary
We begin by reviewing an algorithm for frequency estimation

commonly known as the Misra-Gries (MG) algorithm [MG82],
though it has been rediscovered at least twice [DLOM02, KSP03]
since Misra and Gries proposed it in 1982. For a parameter ε ą 0
that controls the space consumption and accuracy, the MG algorithm
maintains a summary, which we will refer to as a MG summary,
where up to S “ r1{εs items along with their counters are main-
tained. When a stream element e arrives, MG performs the steps in
Algorithm 1 to update the summary.

Algorithm 1: Sequential Misra-Gries
def updatepeq:
if e is an item in the summary then

Increment the counter for e
else

if the summary contains less than S items then
Add e to the summary with a count of 1

else
Decrement all counters maintained by 1 and remove all
counters that reach 0.

From this description, the space requirement of a MG summary
is Op1{εq because it never keeps more than S items and counters.
Let Ce be the value of the counter for item e (it is 0 if item e is not
maintained in the summary). Further, let fe be the true frequency of
item e in the stream. It was shown that Ce is a good estimate for fe;
we reproduce a proof of this lemma as the reasoning here will form
the basis for the analysis of our parallel algorithms.

Lemma 5.1 ([MG82, DLOM02, KSP03]) For any item e P U, the
estimate satisfies fe ´ εm ď Ce ď fe, where m is the length of the
stream observed so far.

Proof. Recall that we set S “ r1{εs. We will focus on showing
that fe ´ m{S ď Ce as the relation Ce ď fe follows directly from
the description.

To prove this, we establish a bound on the number of times the
counter for an element e can possibly be decremented. If this num-
ber is τ, we have that Ce ě fe ´ τ. We give a bound on τ by
considering that every time a counter is decremented, a total of at
least S counters, corresponding to unique items, are decremented.
Viewed differently, when updatepeq decrements counters, it (virtu-
ally) deletes S unique items from the stream: e itself and each of

the S items maintained in the summary. Because there have been m
items in the stream so far, we know that S τ ď m. Hence, we have
τ ď m{S , proving that Ce ě fe ´ m{S ě fe ´ εm.

5.2 Parallel Infinite Window
We describe a parallel streaming algorithm for frequency estima-

tion based on the Misra-Gries algorithm. We prove the following
theorem:

Theorem 5.2 Let ε ą 0. There is a parallel algorithm for frequency
estimation requiring Opε´1q space such that incorporating any
minibatch of size µ takes Opε´1 ` µq work and Oppolylogpε´1, µqq
depth and for any item e, it can provide an estimate f̂e P r fe´εm, fes,
where fe is the true frequency of e in the stream and m “

ř

e fe is
the length of the stream thus far.

Set S “ r1{εs. Like in the sequential setting, our parallel algo-
rithm keeps a selected set of S elements and their corresponding
frequency estimates. This is kept as a sequence xpei, f̂iqy

S
i“1, where

f̂i is the frequency estimate of the element ei. To process a minibatch,
we show how to augment a MG summary with the minibatch in a
way that results in a new MG summary. At the heart of our algorithm
is a parallel routine MGaugment that takes as input a MG summary
and a histogram of frequencies in the minibatch, and outputs a MG
summary of the combined data.

Conceptually, MGaugment combines together the corresponding
counters from input MG summary and the histogram. This, however,
can lead to more than S counters in the result. The algorithm then
systematically decrements certain counters so that at most S of
them remain. To meet the accuracy guarantees, we make sure that
each time a counter is decremented, at least S unique counters are
decremented together, though this has to be performed implicitly to
achieve the parallelism we intended for. We formalize this idea as
follows:

Lemma 5.3 Let F “ xpei, f̂iqy
S
i“1 be a MG summary and H “

xpe1i , f 1i qy
p
i“1 be a histogram. There is an algorithm MGaugment that

takes F and H, and produces a MG summary of size S combining
together F and H in OpS ` pq work and OplogpS ` pqq depth.
Moreover, the resulting summary still satisfies Ce P r fe ´ εm, fes.

Proof. We first form a sequence H1 “ xelt “ ¨, freq “ ¨y,
adding up the corresponding frequencies–i.e., fi from F and f 1i
from H. This step can be accomplished in OpS ` pq work and
Oplog2

pS ` pqq depth using, for example, a hash table of size
OpS ` pq.

Then, we find an integer ϕ such that at most S items in H1 have
freq ě ϕ. Although H1 is arbitrarily ordered, computing ϕ can
be done in Op|H1|q work and Oplog2

|H1|q depth using a variant of
quick select, which can find any element of a given rank. Following
that, the algorithm subtracts ϕ from all the frequencies in H1 and
returns as its output the frequencies that remain positive.

By definition of ϕ, it is easy to see that the output is a summary
with at most S items. We will now show that it has the promised
accuracy guarantees. To do this, we start by observing that our
process—subtracting ϕ from all frequencies and retaining only the
positive ones—has the same net effect as performing ϕ batches
(i “ 1, . . . , ϕ) of decrementing where the i-th batch decrements
precisely the counters for all items whose freq ě i.

Now since i ď ϕ, we know that each batch decrements at least
S unique counters. Therefore, using the reasoning in Lemma 5.1,
we know that the frequency in the output summary is at most m{S
smaller than the true frequency. Since Ce is clearly at most fe, we
conclude that fe ě Ce ě fe ´ m{S ě fe ´ εm, completing the
proof.



Using this lemma, we can derive an algorithm for Theorem 5.2
by first running buildHist (Theorem 2.3) on the minibatch and
feeding the result to MGaugment. For a minibatch of length µ,
buildHist takes Opµq work and polylog depth, so the total depth
remains polylog and the total work to process this minibatch is
Opµ` S ` pq ď Opµ` S q because the number of distinct elements
in a minibatch is at most the size of the minibatch—i.e., p ď µ. This
proves Theorem 5.2.

5.3 Parallel Sliding Window
We now turn to the sliding window case, beginning with a basic

parallel algorithm that meets neither the space nor work bound.
Following that, we improve upon the basic algorithm to achieve the
promised bounds. The main result for the sliding window case is as
follows:

Theorem 5.4 Let ε ą 0. Let n ě 1 be the sliding-window size.
There is a parallel algorithm for sliding-window frequency estima-
tion requiring Opε´1q space such that incorporating any minibatch
of size µ takes Opε´1 ` µq work and Opε´1 ` polylogpµqq depth
and for any item e, it can provide an estimate f̂e P r fe ´ εn, fes,
where fe is the true frequency of e in the sliding window.

5.3.1 The Basic Parallel Algorithm
We present a basic algorithm for the sliding-window case, which

is a direct application of SBBC. Let ε ą 0 be given. We set S “
r1{εs. The algorithm is very simple: it keeps an SBBC for every
item. Let Γe be the p8, n{S q-SBBCpnq for item e. Let B be a
collection of SBBCs that the algorithm maintains. Then, we can
support operations for incorporating a minibatch and querying for a
frequency estimate as follows.

To query for item e’s frequency, we return the estimate from Γe if
Γe P B; otherwise, we return 0. To process a minibatch T , µ “ |T |,
we perform the following steps:

(1) For each item e present in T or B, create a CSS χpeq for the
binary sequence x1tT j“eu : j “ 1, . . . , |T |y.

(2) For each item e present in T or B, create Γe if it does not
already exist in B and then call advance with χpeq.

Step 1 can be implemented in Opµ log µqwork and Oplog µq depth
by first marking each element of T with its position and then using
a parallel sort routine to gather identical items together. Then, Step
2 performs at most Op

ř

er
ne

n{S ` n1esq “ OpS ` µq “ Opε´1 ` µq

work, where ne is the true frequency of e in the sliding window
before adding T and n1e is the frequency of e in T . Hence, the
cost of processing a minibatch T is Opε´1 ` µ log µq work and
Oppolylogpε´1, µqq depth.

We provide an estimate for an item e by reporting

f̂e “ valpΓe.querypqq ´ n{S .

As a direct consequence of Theorem 3.4, we know that for any
item e, our estimate f̂e satisfies fe ´ n{S ď f̂e ď fe, where fe

is the true frequency in the window after adding T . This implies
fe ´ εn ď f̂e ď fe, as promised. Moreover, the SBBCs combined
require Op|B|q`

ř

e Op fe
n{S q “ Op|B|` ε´1q space, where we have

used the fact that
ř

e fe “ n.
We summarize the guarantees of the basic algorithm in the fol-

lowing theorem:

Theorem 5.5 Let ε ą 0. Let n ě 1 be the sliding-window size.
There is a parallel algorithm for sliding-window frequency es-
timation such that incorporating any minibatch of size µ takes

Opε´1 ` µ log µq work and Oppolylogpε´1, µqq depth and for any
item e, it can provide an estimate f̂e P r fe ´ εn, fes, where fe is the
true frequency of e in the sliding window. Further, this algorithm
requires Op|B| ` ε´1q space, where B is the collection of SBBCs it
keeps.

We note that B may be as large as Ωpnq, much larger than that
of the best sequential algorithm for this problem, which uses only
Opε´1q space.

5.3.2 First Improvement: Space
The basic parallel algorithm has two significant drawbacks: First,

as already noted, it can consume more space than the best sequential
algorithm, especially when there are many unique items. Second, it
performs more work than the best sequential counterpart (not work
efficient). In this section, we improve upon the space requirement
and in the section that follows, we will improve on the work bound.

Like in the sequential case (e.g., [LT06b]), the basic idea is to
track the frequencies of a selected few items approximately. To
ensure that the estimate is accurate, we use the decrement opera-
tion of SBBCs to mimic the decrement actions in the Misra-Gries
algorithm, where the counters whose count drops to zero are dis-
carded. In essence, our algorithm is a parallelization of Lee and
Ting’s algorithm [LT06b].

We assume without loss of generality (WLOG) that the minibatch
is smaller than the window size n. Otherwise, we could throw away
the state and start over by looking at the most recent n items in the
minibatch, resetting any error accumulated.

Let ε ą 0. Fix S “ 8{ε and λ “ εn{4. Our updated algo-
rithm keeps track of p8, λq-SBBCpnq counters, similar to the basic
algorithm (but with less error), but we will make sure that the col-
lection B never grows larger than S . We accomplish this by adding
a pruning step after Step 2 of the basic algorithm. The new step
decrements a number of counters so that at most S of them remain
positive. We arrive at the algorithm presented in Algorithm 2.

Algorithm 2: A space-efficient algorithm for windowed fre-
quency estimation.

1. For each item e present in T or B, create a CSS χpeq for the binary
sequence x1tT j“eu : j “ 1, . . . , |T |y.

2. For each item e present in T or B, create Γe if it does not already
exist in B and then call advance with χpeq.

3. Prune B by

(a) Compute a value ϕ such that at most S counters in B have
values3at least ϕ.

(b) For each Γe P B whose value is at least ϕ, in parallel, call
Γe.decrementpϕq, dropping a counter if its value goes to 0.
All the other counters will just be deleted.

We analyze the updated algorithm:

Claim 5.6 The space-efficient version requires Opε´1q space. Fur-
thermore, processing a length-µ minibatch takes Opε´1 ` µ log µq
work and Oppolylogpε´1, µqq depth.

Proof. After this pruning step, the size of B is clearly at most
S , so the space consumption of the updated algorithm is Op|B|q `
ř

e Op fe
λ
q “ Opε´1q space, where, again, fe is the frequency of e in

the window after adding T and
ř

fe “ n. Furthermore, let B1 be

3Remember that the value of a counter Γ is valpΓ.querypqq.



the collection B before pruning, so the work in Step 3 is

|B1| `
ř

e:ΓePB
fe
λ
ď |B1| ` Opε´1q “ Opµ` ε´1q

by Theorem 3.4; the depth is polylog in µ and ε´1. The work and
depth of Steps 1 and 2 are unchanged: Opε´1 ` µ log µq work and
Oppolylogpε´1, µqq depth, concluding the proof.

It remains to show that the estimate is still accurate:

Claim 5.7 The space-efficient version provides estimates such that
for any item e, our estimate f̃e P r fe ´ εn, fes, where fe is the true
frequency of e in the window.

Proof. If we maintained all the counters (without decrementing
or discarding), we would look up the counter Γe and returns an
estimate f̂e “ valpΓe.querypqq ´ λ satisfying fe ´ λ ď f̂ ď fe.

The space efficient algorithm, however, decremented and removed
several counters. To analyze this portion of error, we follow the
line of reasoning of Lemma 5.1. Note that our decrement process
can be conceptually broken down into ϕ batches, where each batch
decrements at least S counters by exactly 1 (cf. Lemma 5.3).

Suppose the last item in the minibatch is bt. We consider the coun-
ters’ states right before the minibatch containing item bt´n`1 arrived.
Let Ψ0 be the total number of 1’s these counters maintained (i.e., Ψ0

is the sum of all valpΓe.querypqq at that point). Furthermore, let Ψ1

be the number of 1’s added to counters created or advanced after that
point. We establish thatΨ0 ď p

ř

e f 1e q`S ¨λ ď 3n because there can
be at most S counters (due to pruning). Also, we know thatΨ1 ď 2n
because there are n elements between bt´n`1 and bt and the mini-
batch containing bt´n`1 itself has size at most n, as we had assumed
WLOG. Hence, we can upper bound the error due to counter decre-
menting for any element e as pΨ0 ` Ψ1q{S ď 5n{S “ 5

8εn ă 3
4εn.

Hence, the total error is at most 3
4εn` λ “ εn.

Therefore, with the space improvement, we have:

Theorem 5.8 Let ε ą 0. Let n ě 1 be the sliding-window size.
There is a parallel algorithm for sliding-window frequency es-
timation such that incorporating any minibatch of size µ takes
Opε´1 ` µ log µq work and Oppolylogpε´1, µqq depth and for any
item e, it can provide an estimate f̂e P r fe ´ εn, fes, where fe is the
true frequency of e in the sliding window. Further, this algorithm
requires Opε´1q space.

5.3.3 Second Improvement: Work
With the space improvement, the space bound now matches that of

the best sequential algorithm. We now turn to the work aspect. The
previous algorithm (Algorithm 2) would have been work efficient if
we had been able to construct all CSSs χpeq in linear work in parallel.
We, however, do not know how to accomplish that. Instead, we
observe that if we can predict which counters will survive after the
pruning step, we will not have to construct sequences for counters
that will be thrown away in the end. Building on this idea, we devise
an algorithm for determining which counters will be kept. Then, we
give a linear-work parallel algorithm that constructs CSS χpeq for
the items that will be kept, though this latter algorithm has depth
Opε´1q, which is linear in the number of counters to be kept.
Predicting Survivors: We describe predict, an algorithm for
computing the set K of items that will be retained after the prun-
ing step, as well as the pruning “cut off” ϕ. Before we give the
description, keep in mind that we have assumed WLOG that each
minibatch is smaller than the window size n. First, we construct a
histogram H for the minibatch; this requires at most Opnq work and
polylog depth. Then, we read off the values of the existing SBBCs

after “shrinking” the window to evict elements too old for the new
window (using valpshrinkpΓ.queryqq). It is easy to see that adding
the corresponding counts together gives us the counts if we were to
perform Steps 1–2 in the previous algorithm.

With these counts calculated, we can easily compute the cutoff
ϕ in Step (3a) of the previous algorithm (see Lemma 5.3 for an
algorithm). Using ϕ, we know how much the surviving counters
must be decremented by and which counters will be retained.

All these can be performed in Op1{ε`µqwork: buildHist takes
linear work; the work performed by shrink across all counters is
ř

e:ΓePB
fe{λ “ Op1{εq; and computing ϕ takes at most Op1{ε` µq

work. Further, all these operations have polylogpµ, 1{εq depth.

Constructing Selected Sequences: Given a set K of items that we
will retain after processing the minibatch, we describe an algorithm
to construct the CSS χpeq for all e P K simultaneously:

Lemma 5.9 There is an algorithm siftpT,Kq that takes a stream
segment T “ xa1, a2, . . . , a|T |y and an index set K, and produces
|K| sequences tχpκquκPK such that χpκqi is the CSS representing the
binary sequence x1ta j“eu : j “ 1, . . . , |T |y. Moreover, sift runs in
Op|T | ` |K|q work and Op|K| ` logp|K| ` |T |qq depth.

Proof. We describe an algorithm consisting of two steps: First,
it produces a subsequence s1 of T containing only elements that are
in K, where each element of s1 is tagged with its original position in
T . For i “ 1, . . . , |s1|, let pi denote the position of the element s1i in
T . This can be accomplished in Op|T |q work and Oplog |T |q depth
using standard techniques [JáJ92]. Then, we derive the sequences
for CSS χpκq’s as follows.

Let us observe that given the sequences s1 and p, we can easily
derive the sequences tχpκquκPK in Op|s1|q work and Op|s1|q depth
using sequential radix sort, which is stable. To parallelize this
process, we divide s1 (and p) into |s1|{|K| equal-sized pieces (each
is |K| long) and run the sequential algorithm on these pieces in
parallel. Each of these pieces requires Op|K|q work and Op|K|q
depth, resulting in Op |s

1|

|K| ¨ |K|q “ Op|s1|q work and Op|K|q depth for
the all pieces combined. At this point, each piece has been converted
into |K| sequences, one for each κ P K. To generate the final output,
we concatenate sequences of the same κ together, preserving order.
For each κ, while the depth is bounded by Oplog |s1|q, the work is
Op|s1|{|K| ` `κq, where `κ is the length of the final sequence χpκq.
The |s1|{|K| term is due to a prefix-sum operation to determine the
position in the output, and the `κ reflects the cost to write a sequence
of that length. Since there are |K| values of κ, we have that the
work for concatenation is Op|K| |s

1|

|K| `
ř

κPK `κq “ Op|s1| ` |K|q ď
Op|s| ` |K|q, which concludes the proof.

Using the output from the routine predict for predicting sur-
vivors (i.e., K and ϕ), we call siftpT,Kq to generate χpeq for all
e P K. Following that, we update the counters by calling advance
with χpeq (we create it if it did not exist) and subsequently calling
decrement with ϕ for all e P K. Finally, we delete all existing
counters that do not exist in K.

Because this algorithm simulates the effects of the previous al-
gorithm, the space bound and accuracy guarantees follow from the
previous analysis. It remains to analyze the work and depth of this
algorithm. We have shown that predict takes Op1{ε`µqwork and
polylogp1{ε, µq depth. Also, the set K has size at most Op1{εq. So
then, siftpT,Kq takes Opµ`1{εqwork and Op1{ε`logpµqq depth.
Finally, the combined work performed by advance and decrement
is at most Op1{εq, as analyzed before. This proves Theorem 5.4.



5.3.4 Lower Bound
We show a lower bound on the work required to identify all heavy

hitters from a stream in the infinite window case, proving work
optimality of our algorithm.

Lemma 5.10 On a stream of total length N, any deterministic al-
gorithm that outputs all items with frequency φN or greater, and no
item with frequency less than pφ´ εqN must have work ΩpNq.

Proof. We argue that every deterministic algorithm that has the
above property must examine ΩpNq elements of the stream. We
prove this using contradiction; suppose there was a deterministic
algorithmA with the above property that examined less than p1´
φqN stream elements.

Consider an input I1 where the algorithm output the set S 1. We
construct another input I2 as follows. Let y be an item that does
not belong to S 1; such an element y must exist since the algorithm
cannot output all elements as a part of S 1, and every element that is
output must have a minimum frequency. I2 is identical to I1, except
that in every position of I1 that was not examined byA, I2 contains
y. The frequency of y in I2 is at least φn, and hence y must be output
byA upon observing input I2. However, the behavior ofA on input
I2 must be identical to its behavior on input I1, since every input
element examined by A is identical in both cases. Hence, A will
not output y on input I2, which contradicts the assumption that A
correctly outputs all items with a frequency φn or greater. Hence,
the algorithm A must examine at least p1 ´ φqN elements of the
input, and this takes ΩpNq time.

Note that the above lower bound does not hold for randomized
algorithms which allow a (small) probability of not satisfying the
requirements of heavy hitter identification. Indeed, there are al-
gorithms for identifying heavy hitters by examining only a ran-
dom sample whose size is much smaller than the length of the
stream [MM02, EV03].

We also note that the same argument in Lemma 5.10, of the
algorithm needing to examine a majority of the input, also applies
to frequency estimation; hence, the linear lower bound on work also
applies to frequency estimation. The following corollary follows by
observing that if µ “ Ωp1{εq, then Theorem 5.2 gives a Opµq work
bound:

Corollary 5.11 Our parallel algorithm for frequency estimation
and heavy hitter identification for infinite window (Theorem 5.2) is
work-optimal if the batch size µ is Ωp 1

ε
q.

5.4 Comparison with Independent Data Struc-
ture Approach

We compare our algorithm for frequency estimation and heavy
hitters with a parallel algorithm based on the independent data
structure approach. As described in [ACH`13], there is a mergeable
data structure for approximate heavy hitter identification that takes
space Op1{εq per processor. Suppose there are p processors; the
input stream S is partitioned into sub-streams S1,S2, . . . ,Sp, one
per processor. Processor i processes Si and maintains a local data
structure Di. Since the Dis are mergeable, it is possible to construct
the data structure D for S given only D1,D2, . . . ,Dp, without access
to the individual streams S1,S2, . . .. Hence, the algorithm can
simply send all the Dis to a single processor who merges them
to construct D, which can be used to answer queries about frequency
estimation and heavy hitters on S.

The total memory taken by the parallel algorithm across all pro-
cessors is Opp{εq. Note that this is a factor of p worse than the
sequential algorithm, as well as p times worse that our parallel
algorithm.

Further, merging two data structures Di and D j from processors
i and j is a sequential operation, and the time taken to merge all p
summaries at query time can be Opp{εq, if done at a single processor.
Even if merging is done by organizing the processors into a log p-
deep hierarchy, the depth of this parallel algorithm is Ωpε´1log pq.
With the approach of independent data structures, it seems hard to
overcome this bottleneck, and achieve work-optimality and depth
that is polylog in ε´1.

6. COUNT-MIN SKETCH
In this section, we describe another application of the techniques

developed so far in this paper. We devise a parallel version of the
Count-Min (CM) sketch [CM05]. In the sequential setting, CM
sketch has proved to be a versatile summary for frequency-based
properties of a stream that can be used for answering a variety
of queries on the input stream, including point and range queries,
quantiles, and heavy hitters, among others.

Unlike the other algorithms considered in this work, the CM
sketch gives a notion of probabilistic guarantee, namely an pε, δq-
approximation, where the quantity being reported has relatively
error at most ε with probability at least 1´ δ.

For ε, δ ą 0, the CM sketch algorithm maintains a 2-d array A
with d “ rlnp1{δqs rows and w “ re{εs columns, together with d
hash functions h1, h2, . . . , hd chosen from a family of pair-wise inde-
pendent hash functions. The array A is initially all 0. The sequential
CM algorithm answers a query about an item e by reporting

ae “ min tAri, hipeqs | i “ 1, . . . , du .

Moreover, when an element e shows up in the stream, it updates A by
going through i “ 1, . . . , d, adding 1 to Ari, hipeqs. As Cormode and
Muthukrishnan show, this gives the guarantee that with probability
at least 1´ δ, ae ď fe ` εm, where fe is the true frequency of item
e and m is the length of the stream so far.

A Parallel Implementation: Instead of updating A each time a
new stream element shows up, we observe that if the same item e
shows up k times, they will all be hashed to the same locations and
the count at that location will be incremented by k. Like before,
we work in minibatches. When a minibatch T arrives, we use
the buildHist algorithm to compute a histogram of frequencies
H “ xpelt “ ¨, freq “ ¨qy. For each pelt, freqq P H, we
increment Ari, hepeltqs by freq for i “ 1, . . . , d simultaneously in
parallel.

Simultaneously incrementing these counters, however, requires
some care since some of the locations may be shared by different
items. To increment them in parallel, we gather for each row, the
frequencies that hash to the same column. This can be done in
Opµ`wqwork and polylogpmax tµ,wuq depth using parallel integer
sort [RR89], where we note that the hash values are t1, . . . ,wu.
Hence, processing a minibatch of size µ takes Opµ ` pµ ` wqdq
work and Oppolylogpµ,wqq depth—or if we assume µ “ Ωpwq, then
we have Oplogp1{δqq work per item on average.

To answer a query about e, we report ae “ mintAri, hipeqs |
i “ 1, . . . , du as before, but we compute min in parallel using
a reduce operation (which for length-p data has Oppq work and
Oplog pq depth in the length of the data. Hence, a query costs
Opdq “ Oplnp1{δqq work and Oplog logp1{δqq depth.

We summarize the results as follows:

Theorem 6.1 There is a data structure for maintaining the count-
min sketch in space Opε´1 logp1{δqq such that incorporating a mini-
batch of size µ takes Oplogp 1

δ
qmaxtµ, 1

ε
uqwork and Oppolylogpµ, 1

ε
qq

depth, and a query about any element takes Oplogp1{δqq work and
Oplog logp1{δqq depth.



7. CONCLUSION
We have presented parallel algorithms for maintaining frequency-

based aggregates on a high-velocity stream. The aggregates con-
sidered include heavy hitters, basic counting, frequency estimation,
sum, and the count-min sketch. These algorithms perform linear-
work (i.e., constant work per element on average) and have low
depth. These are the first parallel algorithms for the problems that
are provably work-optimal and low-depth.
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