Efficient Parallel Approximation Algorithms

Kanat Tangwongsan

CMU-CS-11-128
August 2011

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Guy E. Blelloch, Co-Chair
Anupam Gupta, Co-Chair
Avrim Blum
Gary L. Miller
Satish Rao, University of California, Berkeley

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2011 Kanat Tangwongsan

This work is sponsored in part by the National Science Foundation under grant numbers CCF-1018463, CCF- 1018188,
and CCF-1016799, by an Alfred P. Sloan Fellowship, and by generous gifts from IBM, Intel Coporation, and Microsoft
Coporation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author

and do not necessarily reflect the views of the NSF, IBM, Intel, or Microsoft, or other funding parties.

To my parents, Chinda (Achariyakul) Tangwongsan and Supachai Tangwongsan,
and to my grandparents,
who have instilled in me curiosity and courage to discover things
and have always supported me in everything I have attempted.

Abstract

Over the past few decades, advances in approximation algorithms have enabled near-optimal
solutions to many important, but computationally hard, problems to be found efficiently. But
despite the resurgence of parallel computing in recent years, only a small number of these
algorithms have been considered from the standpoint of parallel computation. Furthermore,
among those for which parallel algorithms do exist, the algorithms—mostly developed in the
late 80s and early 90s—follow a design principle that puts heavy emphasis on achieving poly-
logarithmic depth, with little regard to work, generally resulting in algorithms that perform
substantially more work than their sequential counterparts. As a result, on a modest number
of processors, these highly parallel—but “heavy”—algorithms are unlikely to perform com-
petitively with the state-of-the-art sequential algorithms. This motivates the question: How
can one design a parallel approximation algorithm that obtains non-trivial speedups over its
sequential counterpart, even on a modest number of processors?

In this thesis, we explore a set of key algorithmic techniques that facilitate the design, anal-
ysis, and implementation of a wide variety of efficient parallel approximation algorithms.
This includes:

— Maximal nearly independent set. A natural generalization of maximal independent set
(MIS) solvable in linear work, which leads to linear-work RNC ((1+¢) In n)-approximation
set cover, (1— % —¢)-approximation (prefix optimal) max cover, and (4-+¢)-approximation
min-sum set cover—and a work-efficient RNC (1.861 + ¢)-approximation for facility lo-
cation.

— Low-diameter decomposition, low-stretch spanning trees, and subgraphs. This allows
us to develop a near-linear work, O(m!/3)-depth algorithm for solving a symmetric
diagonally dominant (SDD) linear system Az = b, with m nonzeros. The solver leads
fast parallel algorithms for max flow, min-cost flow, (spectral) sparsifier, etc.

— Probabilistic tree embeddings. An RNC O(n?logn)-work algorithm for probabilistic
tree embeddings with expected stretch O(logn), independent of the aspect ratio of the
input metric. This is a parallel version of Fakcharoenphol et al’s algorithm, providing a
building block for algorithms for k-median and buy-at-bulk network.

— Hierarchical diagonal blocking. A sparse matrix representation that exploits the small
separators property found in many real-world matrices. We also develop a low-depth
parallel algorithm for the representation, which achieves substantial speedups over ex-
isting SpMV code.

Acknowledgments

I am deeply grateful to my advisors—Guy Blelloch and Anupam Gupta—for making 5 years
of graduate school one of the best periods of my life. I really could not ask for a better or
more caring advisor. Over the years, both Guy and Anupam have given me the freedom to
spend my time on various (independent) projects while always giving me wonderful advice
and making sure that I don’t lose sight of the big picture. I thank them for putting up with
my random and often unfruitful ideas, all the while helping me distill legit ideas from a sea
of crap, and for believing that something good will come out eventually. Many times during
the course of the PhD I went into a meeting with them frustrated and losing hope on research
work; thanks for giving me the excitement to persevere despite the lack of concrete progress.

I'm also indebted to my committee members, Avrim Blum, Gary Miller, and Satish Rao, for
seeing this thesis through, for letting me steal many hours of their much-demanded time,
and for invaluable questions and suggestions that lead to various results in this thesis.

The results in this thesis are joint with Guy Blelloch, Anupam Gupta, Yiannis Koutis, Gary
Miller, Richard Peng, and Harsha Simhadri. Thank you for your brilliant ideas and making
work fun to the extent possible. In particular, thank you, Richard—late night and weekend
head banging parties, feeding frenzies, the tale of 12 days of Christmas, cow- and munchkins-
related humor, etc., are fun times and fond memories.

Beside work included in this thesis, I have had the pleasure of working with a number of
great minds on various projects (in no particular order): Umut Acar, Dave Andersen, Daniel
Golovin, Amit Kumar, Bindu Pucha, Michael Kaminsky, Ruy Ley-Wild, Mathias Blume, Bob
Harper, Duru Tiirkoglu, and Jorge Vittes. Umut, thank you for getting me started on research,
for showing me how rewarding and enjoyable it can be to work on problems you are pas-
sionate about, for giving a number of cool problems to work on, and for convincing me to
stay at Carnegie Mellon for graduate school. I owe thanks to Dave Andersen, who has di-
rectly and indirectly influenced my work over the years—thank you for helping me in a fun
system project in every way imaginable (millions of thanks to Bindu as well); for teaching
me about systems research and paper writing; and most importantly, for helping me realize
that the theory-systems blend is a load of fun. I'll consider myself lucky if I can write half
as well as Dave Andersen does. Moreover, the Computer Science department at Carnegie
Mellon has been an invaluable resource for me; I couldn’t imagine a more stimulating and
collaborative environment to conduct research in.

To Mom and Dad: 1 would not be where I am today without your unwavering support,

vi

encouragement, and love—and blessing from family members. Thank you for always being
there when I need it, for understanding why a PhD takes N (generally more than 4) years to
finish (and not rushing it), and for believing in me—despite my cat insanity—in this whole
endeavor. Thanks for being the perfect example of hardworking spirit, and instilling in me

curiosity and courage to learn about and discover new things.

To friends and colleagues: This thesis would not be what it is without you guys and your
constant support, moral and otherwise. You have my eternal gratitude, though it isn’t possi-
ble to make a complete list of everyone (as it will be drastically incomplete, however hard I
try). But I feel the urge to single out (and embarrass) some of you in no thoughtful order. Lek
Viriyasitavat, you have made these many years in Pittsburgh feel much like home; thank you
so much for tolerating my nonsense, for feeding me many delicious meals, for offering a kind
shoulder to lean on, and in fact for just being around. I cannot thank Kwang Pongnumkul
enough for being super awesome at everything, for offering me practical advice and support
and lending me ears countless times, for smiles and laughter from fun conversations, for
keeping my company (remotely) when I had to work late at night, and for dragging me out
of hell when I fell in one. I'm very fortunate to have someone close to go through the PhD ex-
perience with. I realize that during difficult times, you probably believe in me more so than
I believe in myself; once again, thank you. Ning Kiatpaiboon, thanks for saving (the last bit
of) my sanity :) through the final years of graduate school and for various soul-searching
conversations that make me understand many things better. Yinmeng Zhang, thank you for
being the best kind of bad influence, for inviting me over for great food and distractions, for
pointing me to bits and pieces of useful math, and for your patience when I whine about
things.

Furthermore, my officemates over the year—Leonid Kontorovich, Haowen Chan, B. Aditya
Prakash, Kate Taralova, and Stephanie Rosenthal—have made my hours at work enjoyable.
Friends both in Pittsburgh and elsewhere make this journey a really special one. Thank
you, everyone, especially Fern Kundhikanjana, Kornchawal Chaipah, Aaron Roth, Arbtip
Dheeravongkit, Gwendolyn Stockman, Roy Liu, Vijay Vasudevan, Noey Munprom, Naju
Mancheril, March Mahatham, Mike Dinitz, Don Sheehy, Yi Wu, Amar Phanishayee, Ig
Chuengsatiansup, Chatklaw Jareanpon, Pai Sriprachya-anunt, Orathai Sukwong, Akkarit
Sangpetch, Mock Suwannatat, Him Dhangwatnotai, Mihir Kedia, ... (I apologize for not

having room to mention your name here.)

Finally, I thank 21st Coffee and Tazza D’oro, and Crazy Mocha and Coffee Tree Roasters (for

the first few years), where much of this work got done.

Contents

Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Early Work on Parallel Approximation Algorithms
Thesis OVErview o v vt i
Algorithms for Facility Location Problems
Algorithms for Maximum Cut
Maximal Nearly Independent Set and Applications
Low-Stretch Spanning Subtrees and Subgraphs, and Parallel SDD Solvers . .
Probabilistic Tree Embeddings and Applications
Hierarchical Diagonal Blocking
Parallel and I/O Efficient Set Cover and Related Problems

1.10 Bibliographical and Personal Notes

2 Preliminaries and Notation

2.1
2.2
2.3

Parallel Models and Performance of Parallel Algorithms
Graph Separators

Existing Techniques in Parallel Approximation Algorithms

3 Facility-Location Problems

3.1
3.2
3.3
3.4

Preliminaries and Notation
Dominator Set e
Facility Location: Greedy

Facility Location: Primal-Dual

vii

vii

Xi

xiii

11
12
13
14

15
16
20
20

viii

CONTENTS
35 OtherResults L 40
3.6 k-Median: Local Search 42
3.7 Conclusion 47
Parallel Max-Cut Using The Matrix Multiplicative Weights Method 49
4.1 Arora-Kale Framework for Solving SDPs 50
4.2 Graph Sparsification L 53
4.3 Parallel MaxCut e 55
Maximal Nearly Independent Set and Applications 59
5.1 Preliminaries and Notation 61
5.2 Maximal Nearly Independent Set (MaNIS) 63
53 Linear-Work Set Cover. 69
54 Set Covering Variants 73
5.5 Greedy Facility Location 80
56 Conclusion L 84

Parallel Low-Stretch Spanning Subtrees and Subgraphs, and Parallel SDD Solvers 85

6.1 Background and Motivations L. 85
6.2 Preliminaries and Notation 87
6.3 Overview of Our Techniques 89
6.4 Parallel Low-Diameter Decomposition 90
6.5 Parallel Low-Stretch Spanning Trees and Subgraphs 96
6.6 Parallel SDD Solver 102
6.7 Conclusion L 111

Probabilistic Tree Embeddings, k-Median, and

Buy-at-Bulk Network Design 113
7.1 Preliminaries and Notation 114
7.2 Parallel FRT Embedding 115
7.3 The k-Median Problem o 122
7.4 Buy-at-Bulk Network Design 126
75 Conclusion 127
7.6 Appendix: VariousProofs o oo 128
Hierarchical Diagonal Blocking 133
8.1 Hierarchical Diagonal Blocking SpMV 136
8.2 Combinatorial Multigrid 140

8.3 Implementation and Evaluation 144

CONTENTS ix

8.4 Conclusions e 153
9 Parallel and I/0O Efficient Set Cover, Max Cover, and Related Problems 155
9.1 Algorithm Design and Implementation 157
9.2 Evaluationo 161
9.3 Conclusion 168
10 Conclusion and Open Problems 169

Bibliography 173

List of Figures

2.1
2.2

3.1
3.2

5.1

5.2

8.1
8.2
8.3
8.4

8.5

8.6
8.7

9.1

9.2

Decomposing the computation: tasks, strands and parallel blocks

Applying the PCO model (Definition 2.2) to a parallel block. Here, Q* (t; M, B; k) =

The primal and dual programs for metric (uncapacitated) facility location.

An example mapping n7: F'* — F and a set of test swaps S.

MaNIS analysis: for each @ € A®), order its neighbors so that New(a) =
{b1,...,by} and deg(b1) < deg(by) < --- < deg(b,/), where n' = degq 1 (a).
Top (left): the gadget used in the find-and-halve reduction. Top (right): an ex-
ample of a circuit. Bottom: the graph produced by performing the reduction on
the circuit from the middle figure.o Lo oL

Simple sequential code for sparse matrix vector multiply (SpMV).
Hierarchical diagonal blocking: decomposing a matrix into a tree of submatrices.
Performance of different SpMV routines (in GFlops) on a variety of matrices. . .
Speedup factors of SpMV on Intel Nehalem X5550, AMD Shanghai 2384, and
Intel Harpertown E5440 as the number of cores used is varied.
Bandwidth consumption of SpMV (in GBytes/sec) on Intel Nehalem X5550, In-
tel Harpertown E5440, and AMD Shanghai 2384 as the number of cores used is
varied. The peak 1- and 8-core bandwidth numbers are from Table 8.1.
Performance of a CMG solve iteration (in GFlops) on different linear systems.

Performance of SpMV routines (in GFlops) with different ordering heuristics. . .

Speedup of the parallel MaNIS algorithm (i.e., how much faster is running the
algorithm on n cores is over running it sequentially) as the number of cores used
isvaried. L

Max k-cover performance (in seconds) as the value of &k is varied.

xi

67

136
147

149

150

. 151

151

List of Tables

8.1

8.2

8.3

8.4

8.5

8.6

9.1

9.2

Characteristics of the architectures used in our study, where clock speeds are
reported in Ghz and 1- and 8-core aggregate bandwidth numbers in GBytes/sec.
For the aggregate bandwidth, we report the performance of the triad test in the
University of Virginia’s STREAM benchmark [McC07], compiled with gcc
-02 and using gcc’s OpenMP. L o

Summary of matrices used in the experiments.

Speedup numbers of parallel SpMV on an 8-core Nehalem machine as compared
to the sequential baselinecode. L.

Total memory accesses (in MBytes) to perform one SpMV operation using dif-
ferent representations.o

PCG: number of iterations required for convergence of error to 10~ and run-
ning time per call in milliseconds. 0 0000

Statistics about different ordering heuristics: ¢ is the /-distance defined in Sec-
tion 8.3.5 and off is the percentage of the entries that fall off the diagonal blocks.
The timing numbers (in seconds, 77 for the sequential code and 7Ty for the par-
allel code on 8 cores) on the Nehalem are reported.

A summary of the datasets used in our experiments, showing for every dataset
the number of sets, the number of elements, the number of edges, the average

set size (avg |S|), the maximum set size (max |S|), and the maximum number of

sets containing an element (A :=max|[{S>e}).,

Performance with ¢ = 0.01 of RAM-based algorithms: the standard greedy
implementation, the disk-friendly greedy (DFG) algorithm of Cormode et al.,
and our MaNIS-based parallel implementation. We show the running time on
p cores, denoted by 7}, (in seconds), and the number of sets in the solutions.

xiii

148

152

. 163

Xiv

9.3

9.4

List of Tables

Performance with € = 0.01 of disk-based algorithms: the disk-friendly greedy
(DFG) algorithm of Cormode et al., and our disk-based MaNIS implementation.
We show the running time and the number of sets in the solutions. 167
Performance of MaNIS-based algorithms on webdocs (in seconds) as ¢ is varied. 168

Chapter

Introduction

Parallel machines have become ubiquitous in the past several years, so much so that it
is nearly impossible to buy sequential machines today. Even the latest generation of cell
phones have multiple general-purpose cores, along with additional special-purpose parallel
hardware. Parallel machines with tens of cores are already common—and machines with
hundreds, if not thousands, of cores are expected in the mainstream in a few years, with
the number predicted to soar several orders of magnitude more in a decade. This trend,
driven in part by physical and economical constraints of processor chips’ production and
energy consumption, has had profound implications to how algorithms must be designed
and implemented to fully leverage the increasing amount of parallelism.

During a similar time frame, the computing industry has witnessed an unprecedented growth
in data size, as well as in problem complexity, which demands more computational power
than ever. This trend has drawn the attention of several communities to approximation algo-
rithms, whose advances over the last few decades have allowed the computation of provably
near-optimal solution (e.g., within less than 0.1% of the optimal solution) in a fraction of
the time required to compute an optimal solution. Despite significant progress made on this
front, these algorithms generally have not been considered from the standpoint of paral-
lel algorithms. For the past decades, the community has focused mainly on improving the
approximation guarantees and running time of sequential algorithms.

This thesis work lies at the interface of parallel algorithms and approximation algorithms,
initiating a principled study of the design, analysis, and implementation of efficient parallel
approximation algorithms—approximation algorithms that can efficiently take advantage of

2 CHAPTER 1. INTRODUCTION

parallelism. By contrast, early work on parallel approximation algorithms is less concerned
with efficiency aspects. Back in the 80s and the early 90s, the community advocated a design
principle that puts heavy emphasis on achieving polylogarithmic depth® with little regard to
work. This results in a number of beautiful algorithms that have an impressive amount of
parallelism but perform substantially more work than their sequential counterparts. Unfor-
tunately, on a modest number of processors, these highly parallel—but “heavy”—algorithms
are unlikely to perform competitively with the state-of-the-art sequential algorithms.

The present work takes a fresh look at this fascinating decades-old subject with a particular
focus on efficiency. Specifically, we are most concerned with the question:

How can one design a parallel approximation algorithm that obtains non-trivial
speedups over its sequential counterpart, even on a modest number of proces-
sors?

To answer this question, we set out to identify and develop a set of key techniques to facilitate
the development of such algorithms. We believe the right combination of parallelism and
approximation algorithms is key to getting scalable performance and is our hope in keep-
ing pace with the growing demand. We adopt a now-common design principle that strives
for low depth—and more importantly work efficiency (i.e., the algorithm cannot perform
significantly more work than its sequential counterpart does). Following this guideline, we
ask:

(1) What key techniques in approximation algorithms are efficiently parallelizable?
(2) How can they be applied to parallelize existing approximation algorithms?

(3) How can algorithmic techniques help overcome challenges arising in the implemen-
tation of these algorithms on a modern machine architecture?

Before we give an overview of the results in this thesis, we present a summary of prior work
on parallel approximation algorithms to put this work in perspective.

1.1 Early Work on Parallel Approximation Algorithms

Throughout the late 1980s and early 1990s, research in the algorithms community focused
most of the efforts on developing parallel algorithms, some of which are approximation algo-
rithms, an area which started to gain popularity around the time interest in parallel comput-

By depth, we mean the longest chain of dependencies and by work, the total operation count. We formally
define these notions in Chapter 2)

1.2. THESIS OVERVIEW 3

ing research started to fade. It should be noted, however, that back then, the primary goal
was to obtain NC and RNC algorithms (i.e., algorithms that run in polylogarithmic depth)
even at the expense of much worse work bounds. This trend was in large part motivated
and justified by work in complexity theory that popularizes the distinction between (R)NC
and P, where polylogarithmic depth is often thought of as fast running time and work is of
secondary concern, as long as it is kept polynomial.

During this period of time, several RNC and NC algorithms have been proposed. There
are RNC and NC parallel approximation algorithms for set cover [BRS94, RV98], vertex
cover [KVY94, KY09], special cases of linear programs (e.g., positive LPs and cover-packing
LPs) [LN93, Sri01, You01], and k-center [WC90]. These algorithms are typically based on
parallelizing their sequential counterparts, which usually contain an inherently sequential
component (e.g., a greedy step which requires picking and processing the minimum-cost el-
ement before proceeding to the next). A common idea in these parallel algorithms is that
instead of picking only the most cost-effective element, they make room for parallelism by
allowing a small slack (e.g., a (1 + ¢) factor) in what can be selected. This idea often re-
sults in a slightly worse approximation factor than the sequential version. For instance, the
parallel set-cover algorithm of Rajagopalan and Vazirani is a (2(1 +) In n)-approximation,
compared to a In n-approximation produced by the standard greedy set cover. Likewise, the
parallel vertex-cover algorithm of Khuller et al. is a 2/(1 — ¢)-approximation as opposed to
the optimal 2-approximation given by various known sequential algorithms. Only recently
has the approximation factor for vertex cover been improved to 2 in the parallel case [KY09].

1.2 Thesis Overview

As a starting point in understanding how techniques in approximation algorithms can be
parallelized efficiently, we revisit basic problems in approximation algorithms with well-
understood sequential algorithms. Our starting point is a small, but diverse, set of results in
approximation algorithms for problems such as facility location, set cover, and max k-cover,
with a primary goal of developing techniques for devising their efficient parallel counterparts.

Facility Location. Facility location is an ideal class of problems to begin this study. Not
only are these problems important because of their practical value, but they appeal to study
because of their special stature as “testbeds” for techniques in approximation algorithms. As
such, deriving parallel algorithms for these problems is an invaluable step in understanding
how to parallelize other algorithms. We present several algorithms based on greedy, primal-
dual, local-search, and LP-rounding techniques. These results are summarized in Section 1.3.

4 CHAPTER 1. INTRODUCTION

Lessons from this study were instrumental in shaping the formulation of the maximal nearly
independent set problem, which forms the basis for improved algorithms for set cover, max
k-cover, min-sum set cover, and even greedy facility location itself.

Maximum Cut. In addition to facility location, we consider other standard problems in
approximation algorithms, in hope that studying them will shed light on how to parallelize
similar algorithms. For this, we look at the maximum cut (MaxCut) problem: while the
simple randomized %—approximation is trivial to parallelize, it is non-trivial to obtain an
RNC factor-(agw — €) algorithm, where a gy is approximation ratio obtained by the state-
of-the-art Goemans and Willamson’s algorithm [GW95]. The standard GW implementation
requires solving a semidefinite program (SDP), which in general is P-hard. We describe in
Section 1.4 an RNC near-linear work algorithm for MaxCut that achieves essentially the same
guarantees as the GW algorithm.

Advances in approximation algorithms often result from ingenious applications of time-
tested techniques in conjunction with insightful problem-specific ideas. Refined over time,
these versatile techniques are applied to new problems time and again. For instance, tech-
niques such as greedy and randomized rounding are used not only in set cover but also in
facility location; and metric-embedding techniques are applied to k-median and buy-at-bulk
network design, to name a few. This leads to the question: it possible to parallelize some of
these techniques?

Maximal Nearly Independent Set. A generalization of Maximal Independent Set (MIS), this
formulation is inspired by greedy parallel algorithms for set cover and facility location, and
the following simple observation: while the greedy process is often inherently sequential,
one can create opportunities for parallelism by choosing not only the best option available
but also every option roughly as good as the best option, within a threshold. This idea turns
out to be too aggressive: the chosen options may interfere with one another, leading to low-
quality solutions. To rectify this, we formulate and study a combinatorial problem—called
Maximal Nearly Independent Set (MaNIS)—to capture the situation. We present a linear-
work RNC algorithm for the problem, leading to linear-work RNC algorithms for set cover,
prefix-optimal max cover, and min-sum set cover with essentially optimal approximation
guarantees, and a work-efficient RNC (1.861 + ¢)-approximation for facility location.

Embeddings of Distances. Another family of key technique in approximation algorithms
is embeddings: mapping a problem instance into an “easier” space, where it is solved and
“lifted” back to the original space. Embedding techniques underlie the design of several of
the best known approximation algorithms. Of particular interest to this work are variants
of the following problems: embedding metric spaces into distributions over a simpler metric

1.2. THESIS OVERVIEW 5

space (e.g. trees and ultrasparse subgraphs). We present three results related to this. In
Section 1.6 (and in details in Chapter 6), we discuss the first two results—how to embed
the distance metric of an arbitrary (sparse) graph into a spanning subtree or an ultrasparse
spanning subgraph. The latter is motivated by the problem of solving symmetric diagonally
dominant (SDD) linear systems, which we also describe in Chapter 6.

The other embedding result is concerned with probabilistically embedding an arbitrary finite
metric space into a distribution of dominating trees (a parallel version of the FRT embed-
ding). This result is summarized in Section 1.7 (detailed description in Chapter 7). Using the
embedding result, we present algorithms for k-median and buy-at-bulk network design. We
believe there are numerous other applications of these embedding techniques.

The complexity of modern parallel machines presents opportunities for algorithmic inno-
vations to improve computing performance. As an example, it is commonly observed that
as the number of cores increases, the per-core memory bandwidth does not scale propor-
tionally, starving the individual cores in memory-intensive applications. This phenomenon
turns out to be a major limiting factor in the scalability of sparse matrix-vector multiply
(SpMV), an important subroutine in high-performance computing and other data-intensive
applications.

Low-Bandwidth Computing by Exploiting Structure in the Data. A surprising number
of real-world datasets have a certain structure that can be exploited in algorithms design.
As a prime example, real-world graphs, including the US road network, the Internet graph,
and finite-element meshes, have “small separators®,” a useful property that has led to the de-
velopment of data compression techniques that require only a linear of number of bits and
enhance locality [BBK04, BBK03]. Inspired by previous work in this area, we study how to
take advantage of the small-separator structure to lower the bandwidth requirement. As a
step in this direction, we propose a representation—called Hierarchical Diagonal Blocking
(HDB)—which can substantially enhance the performance of SpMV. This work is summa-
rized in Section 1.8. Already, improving the performance of SpMV automatically boosts the
performance of the numerous applications that use SpMV at the core.

Parallel and I/O Algorithms for Set Cover and Related Problems. Finally, building on the
results on maximal nearly independent set, we design and analyze 1/O efficient and parallel
versions of algorithms for set cover, max k-cover, and min-sum set cover, with I/O cost no
more expensive than that of sorting. We demonstrate the practicality of these algorithms
by showing empirical evidence that our algorithms are substantially faster than existing
implementations. This is discussed in Section 1.9

*We give a precise definition in Section 2.2

6 CHAPTER 1. INTRODUCTION
1.3 Algorithms for Facility Location Problems

Studied in Chapter 3, facility location is an important and well-studied class of problems
in approximation algorithms, with far-reaching implications in many application areas. As
we discussed earlier, these problems are important from both practical and theoretical per-
spectives. For these reasons, deriving parallel algorithms for facility location problems was
our first step towards understanding how to parallelize common techniques in approxima-
tion algorithms. Previous work on facility location commonly relies on techniques such as
linear-program (LP) rounding, local search, primal dual, and greedy, for which no general-

purpose parallelization technique exists.

We show how to parallelize many facility-location algorithms. Our goal was to understand
how different techniques in approximation algorithms can be parallelized. To this end, we
consider the primal-dual algorithm of Jain and Vazirani [JV01b], the greedy algorithm of Jain
et al. JMM™ 03], and the LP-rounding algorithm of Shmoys et al. [STA97]. Additionally, we
study Hochbaum and Shmoys’s algorithm [HS85] for k-center, and the natural local-search
algorithms for k-median and k-means [AGK™ 04, GT08]. Details appear in Chapter 3. We
summarize the results of this chapter in the following:

Primal-Dual Algorithm. Building on the sequential primal-dual algorithm of Jain and Vazi-
rani [JV01a], we obtain the following theorem.

Theorem 1.1 Let ¢ > 0 be fixed. For sufficiently large m, there is a primal-dual RNC
O(mlog, _m)-work algorithm that yields a factor-(3 + ¢) approximation for the metric
facility-location problem.

Greedy Algorithm. The greedy scheme underlies an exceptionally simple algorithm for facil-
ity location, due to Jain et al. JMM™03]. To describe the algorithm, we need a couple of defi-
nitions: a star (7, S) consists of facility i and a set of clients S, costing ﬁ (fit2jesd(d:9)).
The greedy algorithm of Jain et al. proceeds as follows:

Until no client remains, pick the cheapest star (7, C’), open the facility i, set
fi = 0, remove all clients in C’ from the instance, and repeat.

Parallelizing this algorithm gives the following bounds:

Theorem 1.2 Let 0 < € < 1 be fixed. For sufficiently large input, there is a greedy-style
RNC O(mlogia(m))—work algorithm that yields a factor-(3.722 + ¢) approximation for
the metric facility-location problem.

1.4. ALGORITHMS FOR MAXIMUM CUT 7

Results on Other Facility-Location Problems. In addition to these algorithms, we are able to
obtain the following results:

« given an optimal LP solution for the standard primal LP, there is an RNC rounding
algorithm yielding a (4 + ¢)-approximation with O(m logmlog, . m) work (based
on the sequential algorithm of Shmoys et al. [STA97]).

« a2-approximation for k-center based on the algorithm of Hochbaum and Shmoys [HS85].

« for k < polylog(n), (5 + €)- and (81 + ¢)- approximation algorithms for k-median
and k-means, resp., based on the natural local search algorithms [AGK 04, GT08]

Note that for the k-center result, we did not sacrifice the solution’s quality in the process.

Summary of Techniques. Common in these algorithms (except for the k-center algorithm)
is an idea we call geometric-scale bucketing. Most of these algorithms proceed in multiple
rounds, where each round can be viewed as identifying and processing the best available
option. Geometric scaling creates opportunities for parallelism by attempting to process
every option that is roughly as good as the best option (up to some multiplicative factors).
Consequently, it typically causes some notion of utility to increase in powers of (1 + ¢),
resulting in a small number of rounds.

In most cases, however, this policy turns out to be too aggressive, and we need another idea
to control the solution’s quality. This is typically different for each problem. Specifically, for
the greedy facility-location algorithm, we need an idea to manage the overlaps between the
chosen stars. This process forms the starting point of the work studied in Chapter 5.

1.4 Algorithms for Maximum Cut

Chapter 4 presents a parallel algorithm for the maximum cut (MaxCut) problem. This basic
graph optimization problem has laid the foundation for many of the now-common tech-
niques in both approximation algorithms and the theory of hardness of approximation.
Given a graph G = (V, E), the goal of this problem is to find a bipartition of the graph
so as to maximize the number of edges between the parts.

We design and analyze a parallel algorithm for MaxCut that essentially matches the approx-
imation ratio agw ~ 0.878 - - - of the algorithm of Goemans and Williamson [GW95]. The
algorithm runs in nearly linear work and has polylogarithmic depth. More specifically, we

show the following theorem:

Theorem 1.3 For a fixed constante > 0, there is a (1 — &) agw-approximation algorithm for

8 CHAPTER 1. INTRODUCTION

MaxCut on an unweighted graph with n nodes and m edges that runs in O(m log” n) work
and O(log® n) depth.

The main technical ideas include a parallel transformation and sparsification technique (part
of it was implicit in [Tre01]) that turns an arbitrary unweighted graph into a graph with
slighter more nodes but without any high-degree node, and a parallel implementation of
Arora and Kale’s primal-dual framework for approximately solving SDPs [AK07]. We be-
lieve our parallel implementation of the AK framework will find other interesting applica-
tions, especially when the SDP has small width.

1.5 Maximal Nearly Independent Set and Applications

In Chapter 5, we initiate the study of maximal nearly-independent set, a generalization of
the well-known maximal independent set (MIS) problem. As motivation, we consider par-
allel greedy approximation algorithms for set cover and related problems. Sequentially, the
greedy method for set cover iteratively chooses a set that has optimal cost per element and
removes the set as well as its elements. For n ground elements, this gives a polynomial algo-
rithm with an optimal (assuming standard complexity assumptions) approximation ratio of
H, =314 % Berger, Rompel, and Shor [BRS94] show that the method can be parallelized
by bucketing costs by factors of (1 + ¢) and processing sets within a bucket in parallel. This
requires a careful subselection within a bucket so that the sets selected in parallel have limited
overlap. With this, they develop an algorithm that runs in polynomial work and polyloga-
rithmic depth (i.e., it is in RNC) with an approximation ratio of (1 +) H,,. The problem was
also studied by Rajagopalan and Vazirani[RV98], who achieve better work-depth bounds but
worse approximation ratio of about 2(1 +) H,.

We abstract out a key component in their approaches, which we refer to as Maximal Near
Independent Set (MaNIS). The definition of MaNIS is a natural generalization of Maximal
Independent Set (MIS). In words, it offers a way to select a subcollection from a collection
of sets and give a total order on this subcollection such that (1) adding sets in this order
guarantees that each time a new set is added, at least a “large” fraction of the set’s elements
did not appear in the existing sets; and (2) the set not chosen in this subcollection has a
significant overlap with the union of those in it.

Definition 1.4 (Ranked (&, §)-MaNIS) Lete,d > 0. Given a bipartite graph G = (AU
B, E), we say that a set J = {s1,82,...,5k} C A is a ranked (¢,d) maximal nearly
independent set, or a ranked (£, 6)-MaNIS for short, if

1.6. LOW-STRETCH SPANNING SUBTREES AND SUBGRAPHS, AND PARALLEL SDD
SOLVERS 9

(1) Nearly Independent. There is an ordering (not part of the MaNIS solution) s1, s2, . . . , Sk
such that each chosen option s; is almost completely independent of s1, s2, ..., Si—1,
e, foralli =1,... k,

IN(s) \ N({s1, 82, si1})] = (1= 6 —)N ().

(2) Maximal. The unchosen options have significant overlaps with the chosen options, i.e.,
foralla € A\ J,
[N(a) \ N(J)| < (1 —¢€)|N(a)l.

We derive a simple O(m) work and O(log? m) depth randomized algorithm for computing
ranked (g, 3¢)-MaNIS, where m is the number of edges in the bipartite graph G. With
MaNIS, we develop a simple O(m) work, O(log® m) depth randomized solution to set cover
with an approximation ratio (1 + £)H,,. This reduces the work by O(log® m) over the
best previous known parallel (RNC) methods. In fact, the bucketing technique allows us to
improve on the ©(m log m)-work bound for the sequential strictly greedy algorithm, albeit
at the loss of (1+¢) in the approximation ratio. Furthermore, we apply the approach to solve
several related problems in polylogarithmic depth, including a (1 — 1/e — ¢)-approximation
for max k-cover and a (4 + ¢)-approximation for min-sum set cover both in linear work; and
an O(log* n)-approximation for asymmetric k-center for & < log®") n and a (1.861 + ¢)-
approximation for metric facility location both in essentially the same work bounds as their
sequential counterparts. These algorithms improve on previous results for all problems, and
for asymmetric k-center and min-sum set cover are the first RNC algorithms that give a
non-trivial approximation.

1.6 Low-Stretch Spanning Subtrees and Subgraphs, and Par-
allel SDD Solvers

Chapter 6 presents the design and analysis of a near linear-work parallel algorithm for solv-
ing symmetric diagonally dominant (SDD) linear systems. On input of a SDD n-by-n ma-
trix A with m non-zero entries and a vector b, our algorithm computes a vector Z such that
|Z — ATb|[a < - [|ATD][4 in O(mlog®M nlog L) work and O(m!/3+%log 1) depth for
any fixed 8 > 0.

The algorithm relies on a parallel algorithm for generating low-stretch spanning trees or
spanning subgraphs. To this end, we first develop a parallel decomposition algorithm that

10 CHAPTER 1. INTRODUCTION

in polylogarithmic depth and O(|E|) work?, partitions a graph into components with poly-
logarithmic diameter such that only a small fraction of the original edges are between the
components. This can be used to generate low-stretch spanning trees with average stretch
O(n®) in O(n'*®) work and O(n®) depth. Alternatively, it can be used to generate span-
ning subgraphs with polylogarithmic average stretch in O (|E|) work and polylogarithmic
depth. We apply this subgraph construction to derive our solver. Specifically, we are able to
prove the following theorem:

Theorem 1.5 For any fixed ¢ > 0 and any € > 0, there is an algorithm SDDSolve that on
input ann x n. SDD matrix A with m non-zero elements and a vector b, computes a vector T
such that ||& — Atb||a < e - [|ATD|4 in O(mlog®™M nlog 1) work and O(m*/*+%1og 1)
depth.

By using the linear system solver in known applications, our results imply improved parallel
randomized algorithms for several problems, including single-source shortest paths, maxi-
mum flow, min-cost flow, and approximate max-flow.

In the general solver framework of Spielman and Teng [ST06, KMP10], near linear-time SDD
solvers rely on a suitable preconditioning chain of progressively smaller graphs. Assuming
that we have an algorithm for generating low-stretch spanning trees, the algorithm as given
in Koutis et al. [KMP10] parallelizes under the following modifications: (i) perform the par-
tial Cholesky factorization in parallel and (ii) terminate the preconditioning chain with a
graph that is of size approximately m'/3. As discussed in more details later on, the con-
struction of the preconditioning chain is a primary motivation of the main technical part
of the work in this chapter, a parallel implementation of a modified version of Alon et al’s
low-stretch spanning tree algorithm [AKPW95].

More specifically, as a first step, we find a graph embedding into a spanning tree with av-
erage stretch 20(vIegnloglogn) in (1) work and O(20(V1egnloglogn) o5 A} depth, where
A is the ratio of the largest to smallest distance in the graph. The original AKPW algo-
rithm relies on a parallel graph decomposition scheme of Awerbuch [Awe85], which takes
an unweighted graph and breaks it into components with a specified diameter and few cross-
ing edges. While such schemes are known in the sequential setting, they do not parallelize
readily because removing edges belonging to one component might increase the diameter
or even disconnect subsequent components. We present the first near linear-work parallel
decomposition algorithm that also gives strong-diameter guarantees. This leads a parallel
solver algorithm.

*The O(-) notion hides polylogarithmic factors.

1.7. PROBABILISTIC TREE EMBEDDINGS AND APPLICATIONS 11
1.7 Probabilistic Tree Embeddings and Applications

In Chapter 7, we present a parallel algorithm that embeds any n-point metric into a dis-
tribution of hierarchically well-separated trees (HSTs) with O(n? log n) (randomized) work
and O(log?n) depth, while providing the same distance-preserving guarantees as that of
Fakcharoenphol et al. (i.e., maintaining distances up to O(logn) in expectation) [FRT04].
Probabilistic tree embeddings—the general idea of embedding finite metrics into a distribu-
tion of dominating trees while maintaining distances in expectation—has proved to be an
extremely useful and general technique in the algorithmic study of metric spaces [Bar98].
Their study has far-reaching consequences to understanding finite metrics and developing
approximation algorithms on them. The particular algorithm we parallelize is an elegant
optimal algorithm given by Fakcharoenphol, Rao, and Talwar (FRT).

The main challenge arises in making sure the depth of the computation is polylogarithmic
even when the resulting tree is highly imbalanced—in contrast, the FRT algorithm, as stated,
works level by level and can have high depth. This imbalance can occur when the ratio
between the maximum and minimum distances in the metric space is large. Our contribution
lies in recognizing an alternative view of the FRT algorithm and developing an efficient
algorithm to exploit it. In addition, our analysis also implies probabilistic embeddings into
trees without Steiner nodes of height O(log n) whp. (though not HSTs); such trees are useful
for both our algorithms and have also proved useful in other contexts.

Using this algorithm, we give an RNC O(log k)-approximation for k-median. This is the first
RNC algorithm that gives non-trivial approximation for any & *. Specifically, we prove:

Theorem 1.6 Fork > logn, the k-median problem admits a factor-O(log k) approximation
with O(nk + k(klog(%))?) < O(kn*) work and O(log”n) depth. For k < logn, the
problem admits a O(1)-approximation with O(nlogn + k?log®n) work and O(log®n)
depth.

The algorithm is work efficient relative to previously described sequential techniques. We
also give an RNC O(log n)-approximation algorithm for buy-at-bulk network design. This
algorithm is within an O(logn) factor of being work efficient.

Theorem 1.7 The buy-at-bulk network design problem with k demand pairs on an n-node
graph can be solved in O(n3logn) work and O(log? n) depth.

“There is an RNC algorithm that give a (5 4 ¢€)-approximation for & < polylog(n) [BT10]

12 CHAPTER 1. INTRODUCTION
1.8 Hierarchical Diagonal Blocking

Investigated in Chapter 8, sparse matrix-vector multiplication (SpMV) lies at the heart of
high performance parallel computing, from iterative numerical algorithms to shortest-path
algorithms. On modern machine architectures, the performance of SpMV, however, is almost
always limited by the system’s memory bandwidth [WOV07a, BKMT10]: the processors
(cores) have more computing power than the memory system can keep pace with, resulting
in the common finding that despite a substantial amount of parallelism available, the per-
formance of SpMV algorithms does not scale beyond the first few cores. After performing
a series of bandwidth studies, we identified the bottleneck: when computing the product
y = Awz, even if most of the vector’s entries reside in cache, the memory system cannot
supply the entries of A fast enough.

This finding suggests that we should be able to improve the performance of these SpMV rou-
tines if we can represent A with a smaller memory footprint. We present a matrix represen-
tation, called Hierarchical Diagonal Blocking (HDB), which captures many of the existing
optimization techniques in a common representation. It can take advantage of symmetry
while still being easy to parallelize. It takes advantage of reordering. It also allows for sim-
ple compression of column indices. In conjunction with precision reduction (storing single-
precision numbers in place of doubles), it can reduce the overall bandwidth requirements
by more than 3x. It is particularly well-suited for problems with symmetric matrices, for
which the corresponding graphs have reasonably small graph separators, and for which the
effects of reduced precision arithmetic are well-understood (combinatorial multigrid solvers
are prime examples).

We give an SpMV algorithm for use with HDB representation, proving the following bounds
in the parallel cache oblivious model:

Theorem 1.8 Let M be a class of matrices for which the adjacency graphs satisfy an n®-
edge separator theorem, « < 1, and A € M be an n-by-n matrix with m > n nonzeros,
orm > n lower triangular nonzeros for a symmetric matrix. If A is stored in the HDB

representation T’ then, on a machine with word size w:

(1) T can be implemented to use m + O(n/w) words.

(2) There is a cache oblivious and runs withm/B + O(1 + n/(Bw) +n/M~%) misses
in the ideal cache model. The algorithm runs in O(log®™") n) depth.

The key idea of this representation is as follows: if the graph (corresponding to the matrix)
satisfies the n®-edge separator theorem, then there is a reordering that makes the matrix

1.9. PARALLEL AND I/O EFFICIENT SET COVER AND RELATED PROBLEMS 13

entries look like blocks around the diagonal, without too many edges going across the blocks.
This holds at multiple scales, forming a hierarchy of block structures, which has several
advantages. For instance, since these blocks are non-interfering, they can be executed in
parallel. Furthermore, within a block, we can perform index compression, using fewer bits

to represent the column indices.

We complement the theoretical results with a number of experiments that evaluate the per-
formance of various SpMV schemes on recent multicore architectures. The results show that
by reducing the bandwidth requirements, we not only enjoy substantial performance gain,
but are able to scale much better on multiple cores when the bandwidth becomes more lim-
iting. Our results show that a simple double-precision parallel SpMV algorithm saturates the
multicore bandwidth, but by reducing the bandwidth requirements—using a combination of
hierarchical diagonal blocking and precision reduction—on an 8-core Nehalem machine, we
are able to obtain, on average, a 2.5x speedup over the simple parallel implementation.

1.9 Parallel and I/0 Efficient Set Cover and Related Problems

Chapter 9 presents the design, analysis, and implementation of parallel and sequential I/O-
efficient algorithms for set cover, max cover, and related problems, tying together the line
of work on parallel set cover and the line of work on efficient set cover algorithms for large,

disk-resident instances.

We design and analyze a parallel cache-oblivious set-cover algorithm that offers essentially
the same approximation guarantees as the standard greedy algorithm. This algorithm is the
first efficient external-memory or cache-oblivious algorithm for when neither the sets nor
the elements fit in memory, leading to I/O cost (cache complexity) equivalent to sorting. The
algorithm also implies low cache-misses on parallel hierarchical memories (again, equivalent

to sorting). More specifically, we prove the following theorem:

Theorem 1.9 (Parallel and I/O Efficient Set Cover) The I/O (cache) complexity of the ap-
proximate set cover algorithm on an instance of size W is O(sort(W)) and the depth is
polylogarithmic in W. Furthermore, this implies an algorithm for prefix-optimal max cover
and min-sum set cover in the same complexity bounds.

Building on this theory, our main contribution is the implementation of slight variants of
the theoretical algorithm optimized for different hardware setups. We provide extensive ex-

14 CHAPTER 1. INTRODUCTION

perimental evaluation showing non-trivial speedups over existing algorithms without com-
promising the solution’s quality.

1.10 Bibliographical and Personal Notes

This thesis is a compendium of the end product resulting from extensive collaboration with
various people over the years. Chapter 3 on facility-location problems is joint work with Guy
Blelloch and has previously appeared in SPAA’10 [BT10]. The results in this chapter represent
the starting point of this thesis, convincing us that parallelizing these algorithms requires
new ideas and is an important and interesting pursuit; the supplemented k-median proof was
extracted from joint work with Anupam Gupta [GT08]. The results on MaxCut in Chapter 4
stem from Avrim Blum’s questions after my theory lunch talk and have benefited greatly
from lectures presented in the parallel approximation algorithms reading group (PAARG)
and conversations with Guy Blelloch, Anupam Gupta, and Richard Peng. The body of work
in Chapter 5 on Maximal Nearly Independent Set (MaNIS) is joint work with Guy Blelloch
and Richard Peng; the definition of MaNIS and the presentation of the MaNIS algorithm
have been greatly simplified after various illuminating discussions with Anupam Gupta. In
addition, Gary Miller made us think deeper about the underlying connection between MIS
and MaNIS algorithms, as well as their proof techniques, which helped shape the current
proof. The work previously appeared in SPAA’11 [BPT11].

Chapter 6 on low-stretch subgraphs and parallel SDD solvers is my biggest collaboration

project to date, expanding on the conference version which originally appeared in SPAA’11 [BGK ™ 11].
This work is joint with Guy Blelloch, Anupam Gupta, loannis Koutis, Gary Miller, and
Richard Peng. Chapter 7 on probabilistic tree embeddings and applications results from
collaboration with Guy Blelloch and Anupam Gupta. Chapter 8 on hierarchical diago-

nal blocking is based on my paper with Guy Blelloch, Ioannis Koutis and Gary Miller in

SC’10 [BKMT10]. The SpMV code was originally developed as part of the Parallel Bench-

mark Suite, and the integration was motivated by loannis’s prior experience with using Intel

MKL in his combinatorial multigrid solver. Finally, Chapter 9 on I/O efficient set cover and

related algorithms is joint work with Guy Blelloch and Harsha Simhadri.

Chapter

Preliminaries and Notation

Throughout this document, we denote by [k] the set {1,2,...,k} and use the notation
O(f(n)) to hide polylog and polyloglog factors, i.e., O(f(n)) means O(f(n) polylog(f(n))).
We say that an event happens with high probability (w.h.p.) if it happens with probability
exceeding 1 — n (1),

For a graph G, we denote by deg.(v) the degree of the vertex v in G and use N¢(v) to
denote the neighbor set of the node v. Furthermore, we write © ~ v for u is adjacent to v.
Extending this notation, we write N (X) to mean the neighbors of the vertex set X, i.e.,
Ng(X) = Uyex Ng(w). For a vertex set S C V, we write S to denote the complement of
S,ie., S =V \ S. Furthermore, we denote by E(S, S) the edges crossing the cut S and S,
that is, £(S,S) = {uv € E : uw € S,v € S}. We drop the subscript (i.e., writing deg(v),
N(v), and N (X)) when the context is clear. Let V(G) and E(G) denote respectively the
set of nodes and the set of edges of the graph G.

Metric Space. Let X be asetand d: X x X — R U {0} be a distance function on X. We
say that (X, d) is a metric space if
(i) d(z,y) =0iff. x =y,
(ii) d(z,y) = d(y,x) forall z,y € X, and
(iii) d(z,y) < d(x,z)+d(z,y) forall z,y,z € X.

15

16 CHAPTER 2. PRELIMINARIES AND NOTATION

2.1 Parallel Models and Performance of Parallel Algorithms

Several parallel computing models have been proposed in the literature. Throughout this
work, our low-level (multiprocessor) model of choice is a synchronous shared-memory model,
commonly known as the parallel random-access machine (PRAM), a generalization of the
RAM model for sequential computing [JaJ92]. The PRAM model has the advantage of a sim-
ple, formal model with well-understood connections to other models of parallel machines.
Within the PRAM model, there are variations depending on how concurrent operations are
handled. Standard variants include exclusive-read exclusive-write (EREW), concurrent-read
exclusive-write (CREW) and concurrent-read concurrent-write (CRCW). Within concurrent-
write models, there are different variations (e.g., arbitrary write, and maximum-priority
write) depending how write conflicts are handled. These models were to shown to have sim-
ilar expressivity and power, with EREW being the most restrictive. In this work, we take
the liberty of choosing the model that eases the presentation of a particular algorithm and

discuss its implications in related models.

However, at the level of PRAM abstraction, an algorithm’s description still involves red-
herring details. Because of the nature of our algorithms, we prefer a higher level of ab-
straction, an abstraction with a primary focus on algorithms and less so on the specifics of
how they are executed. For this, we adopt the work-depth model [JaJ92]. In the work-depth
model, the performance of an algorithm is determined by examining two important param-
eters: work (WW)—the total number of operations—and depth (D), also known as span—the
dependencies among the operations. It is also common to refer to work as 77 (time on one

processor) and depth as T, (time on infinitely many processors).

More specifically, our algorithms are presented in the nested parallel model, allowing arbi-
trary dynamic nesting of parallel loops and fork-join constructs but no other synchroniza-
tions (all standard textbook parallel algorithms can be represented in this model). This cor-
responds to the class of algorithms with series-parallel dependence graphs (see Figure 2.1).
Computations can be decomposed into “tasks”, “parallel blocks” and “strands” recursively:
As a base case, a strand is a serial sequence of instructions not containing any parallel con-
structs or subtasks. A task is formed by serially composing £ > 1 strands interleaved with
(k — 1) “parallel blocks” (denoted by t = s1;b1;. .. ;s). A parallel block is formed by com-
posing in parallel one or more tasks with a fork point before all of them and a join point
after (denoted by b = ti||ta|| ... ||tx). A parallel block can be, for example, a parallel loop
or some constant number of recursive calls. The top-level computation is a task. The depth
(aka. span) of a computation is therefore the length of the longest path in the dependence

graph.

2.1. PARALLEL MODELS AND PERFORMANCE OF PARALLEL ALGORITHMS 17

}

Strand

>

—
Task

Parallel Block—}

Figure 2.1: Decomposing the computation: tasks, strands and parallel blocks

The following theorem shows a relationship between the work-depth model and CREW
PRAM:

Theorem 2.1 (Brent’s Theorem [Bre74, JaJ92]) An algorithm with work W and depth D
can be executed on a CREW PRAM machine with p processors in O(W /p + D) time, using
a greedy scheduler.

2.1.1 Parallel Cache-Oblivious Model

On a real computer system, the performance of an algorithm can depend heavily on its cache
performance. The cache-oblivious approach for analyzing algorithms offers a framework for
analyzing the cache cost on a simple, single-level cache, so that the resulting analysis can be
used to imply good performance bounds on a variety of hierarchical caches [FLPR99]. The
ideal-cache model is used for analyzing cache costs. It is a two-level model of computation
consisting of an unbounded memory and a cache of size M. Data are transferred between the
two levels using cache lines of size B; all computation occurs on data in the cache. The model
can run any standard computation designed for a random access machine (RAM model) on
words of memory, and the cost is measured in terms of the number of misses incurred by the
computation. This cost, often denoted by Q(C'; M, B), is referred to as the cache complexity
for a computation C. Often, we write Q (n; M, B) for Q(C; M, B) when the input has size
n and the computation is clear from the context.

The model assumes an ideal cache that evicts the location that will be needed the furthest
into the future (this is the optimal policy). In reality, no real caches are ideal or can even
be ideal since future accesses are not known at the time of eviction. However, such an ideal

cache implies certain bounds on more realistic cache models. For example, an ideal cache

18 CHAPTER 2. PRELIMINARIES AND NOTATION

complexity can be applied on a fully-associative LRU (least recently used) cache with at most
a factor of 2 increase in misses and cache size [FKL"91]. Furthermore, an ideal cache can be
simulated on set-associative caches.

An algorithm is cache oblivious in the ideal-cache model if it does not take into account the
size of M or B (or any other features of the cache). If a cache oblivious algorithm A has
cache complexity Q(A; B, M) on a machine with block size B and cache size M, then on a
hierarchical cache with cache parameters (;, B;) at level 4, the algorithm will suffer at most
Q(A; M;, B;) misses at each level i. Therefore, if Q(A; M;, B;) is asymptotically optimal
for B and M, it is optimal for all levels of the cache.

This type of analysis has recently been extended to the parallel setting [BGS10, BFGS11].
For nested parallel computations, one can analyze the algorithm using a sequential ordering
and then use general results to bound cache misses on parallel machines with either shared
or private hierarchical caches. This works well when the algorithms have low depth. In
particular, for a shared-memory parallel machine with private caches (each processor has its
own cache) using a work-stealing scheduler, Q,,(A4; M, B) < Q(A; M, B) + O(pMD/B)
with probability 1 — § [ABB02], and for a shared cache using a parallel-depth-first (PDF)
scheduler, Q,(A; M +pBD, B) < Q(A; M, B) [BG04], where D is the depth of the com-
putation and p the number of processors. This can be formalized and extended to a more
general setting (i.e., ireggular computation) as follows.

The Parallel Cache-Oblivious model is a simple, high-level model for algorithm analysis. Like
the cache-oblivious model, in the Parallel Cache-Oblivious (PCO) model, there is a memory
of unbounded size and a single cache with size M, line-size B (in words), and optimal (i.e.,
furthest into the future) replacement policy. The cache state « consists of the set of cache lines
resident in the cache at a given time. When a location in a non-resident line [is accessed and
the cache is full, replaces in the line accessed furthest into the future, incurring a cache

miss.

To extend the CO model to parallel computations, one needs to define how to analyze the
number of cache misses during the execution of a parallel block. The PCO model approaches
it by (i) ignoring any data reuse among the subtasks and (ii) flushing the cache at each fork
and join point of any task that does not fit within the cache, as follows. Let loc(t; B) denote
the set of distinct cache lines accessed by task t, and S(t; B) = |loc(t; B)| - B denote its
size (also let s(t; B) = |loc(t; B)| denote the size in terms of number of cache lines). Let
Q(c; M, B; k) be the cache complexity of ¢ in the sequential CO model when starting with
cache state k.

2.1. PARALLEL MODELS AND PERFORMANCE OF PARALLEL ALGORITHMS 19

Task t forks subtasks t; and to,
with kK = {ll, lo, 13}

t1 accesses l1,l4, [5 incurring 2 misses
to accesses l2, l4, lg incurring 2 misses

At the join point: k' = {1, 12, 13,14, 15,16}

Figure 2.2: Applying the PCO model (Definition 2.2) to a parallel block. Here,
Q*(t; M, B; k) = 4.

Definition 2.2 (Parallel Cache-Oblivious Model) For cache parameters M and B the cache
complexity of a strand, parallel block, and a task starting in cache state k are defined re-
cursively as follows (refer to [BFGS11] for more details). For a strand, Q*(s; M, B; k) =
Q(s; M, B; k). For a parallel block, b = t1]|ta]| - . . ||tk,

k
Q*(b; M, B; k) = Y Q*(t; M, B;).
=1
For a taskt = cy;co;...;cp,
k
Q" (M, B;k) = > Q*(ci; M, B ki 1),
=1

where k; = 0 if S(t; B) > M, and
Ki =K U§'=1 loc(cj; B)

if S(t; B) < M.

We use Q*(c; M, B) to denote a computation c starting with an empty cache, Q*(n; M, B)
when n is a parameter of the computation. We note that Q*(c; M, B) > Q(c; M, B). When
applied to a parallel machine Q* is a “work-like” measure and represents the total number of
cache misses across all processors. An appropriate scheduler is used to evenly balance them
across the processors.

As a general guideline: being able to design an algorithm with reasonably low depth is a big
win as the bounds indicate. We note that recursive matrix multiplication, FFT, Barnes-Hut
n-body code, merging, mergesort, quicksort, k-nearest neighbors, direct solvers using nested
dissection, all have low depth and are reasonably efficient under the cache oblivious model.

20 CHAPTER 2. PRELIMINARIES AND NOTATION
2.2 Graph Separators

Informally, a graph has n®, o < 1 edge separators if there is a cut that partitions the graph
into two almost equal-sized parts such that the number of edges between the two parts is
no more than n®, within a constant. To properly deal with asymptotics and what it means
to be “within a constant,” separators are typically defined with respect to an infinite class of
graphs. Formally, let S be a class of graphs that is closed under the subgraph relation (i.e.,
for G € S, every subgraph of GG is also in S). We say that S satisfies an f(n)-edge separator
theorem if there are constants @« < 1 and 5 > 0 such that every graph G = (V,E)in S
with n vertices can be partitioned into two sets of vertices V, V} such that

cutSize(Vg, V3) :dzef IEN(Vax V)| < Bf(n),

where |V,|, |Vs| < an [LT79]. It is well-known that bounded-degree planar graphs and

1/2

graphs with bounded genus satisfy an n"/“-edge separator theorem. It is also known that cer-

tain well-shaped meshes in d dimensions satisfy a n(4~1)/4-edge separator theorem [MTV91].
We note that such meshes allow for features that vary in size by large factors (e.g. small near
a singularity and large where nothing is happening), but require a smooth transition from
small features to large features. In addition, many other types of real-world graphs have

good separators, including, for example, a link graph from Google [BBK04].

Edge separators are often applied recursively to generate a separator tree with the vertices
at the leaves and the cuts at internal nodes. Such a separator tree can be used to reorder the
vertices based on an in- or post- order traversal of the tree. It is not hard to show that for
graphs satisfying an n® separator theorem, the tree can be fully balanced while maintaining
the O(n®) separator sizes at each node.

Separators have been used for many applications. The seminal work of Lipton and Tar-
jan showed how separators can be used in nested dissection to generate efficient direct
solvers [LT79]. Another common application is to partition data structures across paral-
lel machines to minimize communication. It has also been used to compress graphs [BBK03]
down to a linear number of bits. The idea is that if the graph is reordered using separators,
then most of the edges are “short” and can thus be encoded using fewer bits than other edges.

2.3 Existing Techniques in Parallel Approximation Algorithms

There are a number of techniques we can learn from RNC and NC algorithms that have been
developed over the years. These techniques provide invaluable lessons in developing the

2.3. EXISTING TECHNIQUES IN PARALLEL APPROXIMATION ALGORITHMS 21

results in this thesis.

Geometric-Scaling Approximation. To create opportunities for parallelism, many algo-
rithms resort to bulk processing by grouping similar items together. A common idea is that
instead of picking only the “best” option, they make room for parallelism by allowing a
small slack (e.g., a (1 + ¢) factor) in what can be selected. Often used in conjunction with
a filter step, this allows multiple options to be selected together in bulk, which reduces the
depth. This idea often results in a slightly worse approximation factor than the sequen-
tial version. For instance, the parallel set-cover algorithm of Rajagopalan and Vazirani is a
(2(1 4+ ¢€) Inn)-approximation, compared to a In n-approximation produced by the standard
greedy set cover. Likewise, the parallel vertex-cover algorithm of Khuller et al. isa2/(1—¢)-
approximation as opposed to the optimal 2-approximation given by various known sequen-
tial algorithms. Only recently has the approximation factor for vertex cover been improved
to 2 in the parallel case [KY09], which avoids the geometric-scaling approximation. In gen-
eral, geometric scaling makes the number of groups that have to be processed sequentially
a logarithmic function of the ratio between the most costly option and the least inexpensive
option under some valuation.

Subselecting Nearly Non-Overlapping Set. Many optimization problems deal with sets,
and one of the major obstacles in parallelizing algorithms for these problems is in ensur-
ing that the sets that the algorithm ends up choosing do not have significant overlap with
each other. A prime example is the situation that happens in the set cover problem, which
was our initial motivation for the work on Maximal Nearly-Independent Sets (MaNIS) in
Chapter 5. Applying a geometric-scaling approximation to set cover creates the following
scenario: faced with a number of sets of roughly equal size (i.e., between, say, (1 — ¢)s and
s), we want to choose some of these sets to ensure that the selected sets taken together cover
approximately as many elements as the sum of the individual set sizes.

Berger, Rompel, and Shor [BRS94] developed a clever technique, which we call independent
sampling, that takes care of this situation. This sampling technique should be compared
with Luby’s Maximal Independent Set (MIS) algorithm that flips a coin for each vertex. Here
the idea is that if we choose a set with small enough probability, proportional to how much
overlap there is but independently for all sets, the chosen sets are unlikely to “collide” in too
many places. Later, Rajagopalan and Vazirani [RV98] proposed a different technique, which
we call permutation sampling. This bears much similarity to Luby’s MIS algorithm where a
random number is picked for each node. The key idea in this case is to select a set if the set
“wins” most of its elements after assigning each element to the set which the element belongs
to that has the highest ranking in the permutation order. The work in Chapter 5 formalizes,

22 CHAPTER 2. PRELIMINARIES AND NOTATION

generalizes, and simplifies the crucial steps in these results.

Linear Programs Approximation. Linear programs (LPs) play an important role in the
design and analysis of sequential approximation algorithms, in part because there are fast
algorithms for solving LPs. The problem in the parallel setting is that none of these algorithms
have small depth. In fact, solving a general LP or even approximating the optimal value to
any constant factor is P-complete, making it unlikely that an (R)NC algorithm is possible.
There is, however, a class of LPs that can be approximated to any constant € accuracy in
RNC.

Positive linear programs (PLPs) are a class of linear programs in which all coefficients both
in the objective and the constraints, if non-zero, are positive. The most general form, also
known as mixed covering and packing programs, is either minimizing or maximizing ¢z +
cowo + -+ + cuxy, subject to Cx > b and Px < d, where we require z € R}, ¢; > 0,
Ci; >0,D;; >0,b; > 0and d; > 0. The constraints C'z > b are covering constraints
and Px < d, packing constraints.

For the covering version (or its dual packing version), Luby and Nisan [LN93] presented an
NC O(Ei4 log nlog N log(m/¢))-depth O(E%N log nlog N log(m/¢))-work algorithm, where
n is the number of variables, m the number of constraints, and /N the number of non-zero co-
efficients in the matrix C'. This result implies that we can obtain an O(log n)-approximation
to set cover in 5(]\7), where N here is the sum of the set sizes. But this would not be work
efficient relative the sequential greedy algorithm.

Subsequently, Young [You01] presented a parallel algorithm that can approximate programs
that are both covering and packing (aka. mixed covering and packing programs) in essentially
the same work-depth bounds—but the dependence on ¢ was still 1/£*.

SDPs Approximation. Very recently, Jain and Yao [JY11] announced a parallel algorithm
for approximating positive SDPs up to an arbitrary constant accuracy in polylogarithm depth
and poly (V) work. This directly implies an SDP-based algorithm for MaxCut; however, the
generality of this approach comes at a cost. We believe the MaxCut algorithm derived via
this route does significantly more work than our algorithm for MaxCut from Chapter 4.

Chapter

Facility-Location Problems

Facility location is an important and well-studied class of problems in approximation algo-
rithms, with far-reaching implications in areas as diverse as machine learning, operations
research, and networking: the popular k-means clustering and many network-design prob-
lems are all examples of problems in this class. Not only are these problems important
because of their practical value, but they appeal to study because of their special stature as
“testbeds” for techniques in approximation algorithms. Recent research has focused primar-
ily on improving the approximation guarantee, producing a series of beautiful results, some
of which are highly efficient—often, with the sequential running time within constant or
polylogarithmic factors of the input size.

Despite significant progress on these fronts, work on developing parallel approximation al-
gorithms for these problems remains virtually non-existent. Although variants of these prob-
lems have been considered in the the distributed computing setting [MW05, GLS06, PP09],
to the best our of knowledge, almost no prior work has looked directly in the parallel setting
where the total work and parallel time (depth) are the parameters of concern. The only prior
work on these problems is due to Wang and Cheng, who gave a 2-approximation algorithm
for k-center that runs in O(nlog®n) de