
Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp -

All-Norms and All-Lp-Norms
Approximation Algorithms

Daniel Golovin1∗, Anupam Gupta1†,
Amit Kumar2‡, Kanat Tangwongsan1†

1 Computer Science Department
Carnegie Mellon University, Pittsburgh PA, USA 15213.

2 Department of Computer Science & Engineering
Indian Institute of Technology, Hauz Khas, New Delhi, India 110016.

ABSTRACT. In many optimization problems, a solution can be viewed as ascribing a “cost” to
each client, and the goal is to optimize some aggregation of the per-client costs. We often optimize
some Lp-norm (or some other symmetric convex function or norm) of the vector of costs—though
different applications may suggest different norms to use. Ideally, we could obtain a solution that
optimizes several norms simultaneously. In this paper, we examine approximation algorithms that
simultaneously perform well on all norms, or on all Lp norms.

A natural problem in this framework is the Lp Set Cover problem, which generalizes SET COVER and
MIN-SUM SET COVER. We show that the greedy algorithm simultaneously gives a (p + ln p + O(1))-
approximation for all p, and show that this approximation ratio is optimal up to constants under reasonable
complexity-theoretic assumptions.

We additionally show how to use our analysis techniques to give similar results for the more general
submodular set cover, and prove some results for the so-called pipelined set cover problem. We then go
on to examine approximation algorithms in the “all-norms” and the “all-Lp-norms” frameworks more
broadly, and present algorithms and structural results for other problems such as k-facility-location,
TSP, and average flow-time minimization, extending and unifying previously known results.

1 Introduction
When the solution to an optimization problem affects multiple people or organizations,
there is often a trade-off between various efficiency and fairness measures. Typically, there
is an abstract “cost” associated with each participant and the objective function is some
aggregation of the individual costs. The method of aggregation represents our relative
priorities concerning efficiency and fairness. E.g., in k-median, given demand points D ⊆ V
in a metric space (V, d), we must select k facilities to open: the cost associated with each
participant d ∈ D is its distance to the nearest open facility. Each solution thus induces a cost
vector C ∈ R

|D|
+ , and the objective is to minimize ‖C‖1 = ∑d∈D Cd, the sum of the participant

costs: hence, this method of aggregation favors global efficiency over fairness. Another
extreme is k-center, where we minimize the fairer objective function ‖C‖∞, the maximum
participant cost. Other examples where such trade-offs appear include:

∗Supported in part by NSF ITR grants CCR-0122581 (The Aladdin Center) and IIS-0121678
†Supported in part by an NSF CAREER awards CCF-0448095 and CCF-0729022, and by an Alfred P. Sloan

Fellowship.
‡Part of this work done while visiting Max-Planck-Institut für Informatik, Saarbrücken, Germany.

c© Golovin, Gupta, Kumar, Tangwongsan; licensed under Creative Commons License-NC-ND

2 ALL-NORMS AND ALL-Lp-NORMS APPROXIMATION ALGORITHMS

• Sequencing problems: C measures the “time” of service for each participant, for example
the cover times of the elements in a set cover instance, or the times to reach the vertices
in a TSP instance.
• Scheduling problems: C could be the load of the machines or the flow-times of the

individual jobs.
• Allocation problems: C measures the quality of service of each participant, for example

congestion or dilation in routing problems, and distances in facility location problems.
In general, there are many aggregation functions we might wish to consider. However,
if we are feeling particularly ambitious, we might ask if we can efficiently find solutions
that simultaneously approximate the optimal solutions for each member of a large class
of aggregation functions. Formally, we are given a minimization problem and a class of
aggregation functions F . For each f ∈ F , let C∗f be the feasible vector minimizing f (·).
Then for as small an α as possible, we want to find a feasible cost vector C such that
f (C) ≤ α · f (C∗f) for all f ∈ F . Such a vector C is a simultaneous α approximation for F .

In this paper, we will consider two classes of aggregation functions: the class of
Minkowski Lp norms {Lp | p ∈ R≥1} ∪ {L∞} (i.e., All Lp Norm results), and the class of
all symmetric norms (i.e., AllNorm results). The Lp norm of C, which is ‖C‖p := (∑i Cp

i)
1/p

for a real value 1 ≤ p < ∞ and maxi Ci for p = ∞, provides a nicely parameterized way of
quantifying the efficiency/fairness trade-off.

The question of all-norm minimization was investigated by Kleinberg et al. [KRT01]
in their study of fair resource allocation algorithms for routing and load balancing, and the
problem of all Lp-norms minimization was considered by Azar et al. [AERW04] for machine
scheduling. Subsequent work on these topics was done in the papers [KK00, GMP01, GM06]—
the concepts studied here are closely linked to submajorization of vectors [HLP88], which
is even stronger than simultaneously approximating all symmetric norms (and hence all
Minkowski norms), see [GM06] for details and many interesting results derived therefrom.
For the comprehensive treatment of submajorization and AllNorm approximation, see books
by Hardy et al. [HLP88] or Steele [Ste04].

1.1 All Lp-norms Set Cover

The classical set cover problem wants to pick a small number of sets one-by-one to cover the
elements early in the worst-case, whereas the min-sum set cover problem tries to pick the sets
to cover the elements early “on average”. In this paper, the first question we consider is how to
pick sets so that the second (or higher) moments are small: this is just the Lp-Set Cover (Lp SC)
problem. We show that the greedy algorithm is, in fact, a (p + ln p + 3)-approximation for
all Lp norms simultaneously! Moreover, for any fixed p, we cannot hope to do much better
using any other algorithm, and hence greedy is essentially the best.

Formally, a set cover instance consists of a ground set U of n elements, a collection F
of subsets of U , and a cost function c : F → R+. An algorithm picks sets S1, S2, . . . , St (in
that order) so that their union ∪iSi is U . On this ordering, let ci be the cost of the set Si; i.e.,
ci = c(Si). Informally, we may think of Si as corresponding to an action ai that covers the
elements of Si, and ci is the time required to execute ai. Let the cover index of an element
e ∈ U be defined as index(e) = min{i : e ∈ Si}; i.e., the position of the first set that contains e.
The cover time of an element e ∈ U is defined to be the time required to cover e if we execute
actions in this order: i.e., time(e) = ∑index(e)

i=1 ci. Note that for the case of unit costs, the cover

GOLOVIN, GUPTA, KUMAR, TANGWONGSAN FSTTCS 2008 3

index and cover time are the same. Given the sequence of sets that the algorithm picks, we
obtain a cover time vector C ∈ Rn

+, where Ce is the cover time of the element e ∈ U . The Lp set
cover problem is then to find the ordering that minimizes ‖C‖p. It is easy to see that using
the L1 norm and unit costs we obtain the MIN-SUM SET COVER problem [FLT04], whereas
using the L∞ norm we obtain the classical set cover problem [Chv79, Lov75, Joh74].

We prove the greedy algorithm achieves an approximation ratio of (1 + o(1)) min{p, ln n}
for Lp set cover (which is simultaneously optimal for all Lp norms), and also an O(log n)-
approximation in the AllNorm model. Moreover, even if we focus on any fixed value of p,
we show that it is impossible to approximate the Lp set cover problem better than Ω(p)
unless NP ⊆ DTIME(nO(log log n)). This lower bound holds for all functions p(n) such
that 1 ≤ p(n) ≤ 1−ε

2 ln(n) for all n. We also show that the greedy algorithm achieves an
(p + ln p + 3)-approximation in the Lp Submodular Set Cover problem, which is a generalization
of the Lp set-cover problem to arbitrary submodular functions.

To the best of our knowledge, there has not been any prior work on All Lp Norm ap-
proximation for Set Covering problems seeking to minimize all ‖C‖p; of course, there
is much work for special values of p. For the classical MINIMUM SET COVER problem
(minimize ‖C‖∞), an (1 + o(1)) ln n-approximation is known both by greedy and by LP
rounding [Joh74, Lov75, Chv79, Sla97, Sri99]. Moreover, one cannot get an (1 − ε) ln n-
approximation unless NP ⊆ DTIME(nO(log log n)) [Fei98]. For the MIN-SUM SET COVER

problem (minimize ‖C‖1), we know that greedy is an optimal 4-approximation [FLT04] (see
also [BNBH+98, CFK03]).

1.2 Overview of our Other Results and Related Work

Pipelined Set Cover: This problem was studied in the All Lp Norm framework by Munagala
et al. [MBMW05], and seeks to minimize ‖R‖p where Ri is the number of uncovered elements
before the ith set is chosen. To put this in context, the L1 norm for this problem is the MIN-
SUM SET COVER problem, and the L∞ norm is just |U |. Munagala et al. show that the output
of the greedy algorithm is simultaneously a 91/p-approximation for the Lp norm, and also
give a local-search algorithm that is a 41/p approximation. We show how our proof ideas
from MIN-SUM SET COVER give an (1 + ln p

p + 3
p)-approximation guarantee for the greedy

algorithm for this problem; while slightly worse than the previous known guarantee (note
1 + ln(4)

p ≤ 41/p ≤ 1 + 3
p for all p ≥ 1), it extends to the case of non-uniform costs where no

guarantee was known for the greedy algorithm.

Norm Sampling: We consider the problem of finding a good representative set for the class of
all Lp norms with p ∈ R≥1 ∪ {∞}—namely a set S ⊂ R≥1 ∪ {∞} such that an simultaneous
α-approximation for all Lp norms with p ∈ S implies a simultaneous O(α)-approximation for
all Lp norms with p ∈ R≥1 ∪ {∞}. This leads us to a notion of norm sampling, and we give
tight bounds for the size of S necessary and sufficient to well represent (various subsets of)
the Lp norms, as well as explicit constructions of such sets.

Facility Location Problems: We return to the example at the beginning of the introduction,
where we seek to open k facilities to minimize ‖C‖p, where C is the vector of assignment
costs of demands. It is known that one can get O(1)-approximation algorithm for all norms
provided we open O(k log n) facilities [KK00, GM06], and such a O(log n) blow-up in the

4 ALL-NORMS AND ALL-Lp-NORMS APPROXIMATION ALGORITHMS

number of open facilities cannot be avoided [KK00]. In contrast, we use the above norm-
sampling ideas to give an O(1)-approximation algorithm for all Lp norms with integer values of
p provided we open O(k

√
log n) facilities, and show that opening Ω(k · (logk n)1/3) facilities

may be necessary in some instances.

Results via Partial Covering: For sequencing problems such as TSP, where the cost vector is
the time to reach each of the n vertices in some graph, or sequencing versions of covering prob-
lems (of which Lp set cover is a good example), we show how to use partial covering results
to generate AllNorm approximations. For example, we give an AllNorm 16-approximation
result for the TSP by drawing on the elegant techniques of Blum et al. [BCC+94] and the large
body of subsequent and related work. To extend the result to other problems (like vertex
cover and Multicut on trees), we use results from the well-studied area of partial covering
problems, and the papers of [GKS04, KPS06] in particular.

Flow-Time Scheduling: Some scheduling problems naturally lend themselves to a job-
centric perspective. We consider scheduling jobs on parallel machines and look at the
vector of flow times for each job: given ε-factor extra speed for each machine, we get an
O(1/εO(1))- approximation algorithms for all norms. This extends previous work of Chekuri
et al. [CGKK04] (who proved the result for all Lp norms), Bansal and Pruhs [BP03] (who
gave an All Lp Norm result for a single machine). Related work includes results in the
machine-centric model (see, e.g., [AERW04, GM06, AT04, AE05]).

1.3 Preliminaries and Notations

A norm ‖·‖ on vectors of length n is a function from Rn → R that satisfies the following:
‖α X‖ = |α| ‖X‖ for any α ∈ R and X ∈ Rn, and secondly ‖X + Y‖ ≤ ‖X‖ + ‖Y‖ for
X, Y ∈ Rn. The Minkowski Lp norm of X is ‖X‖p = (∑i Xp

i)1/p for a real value 1 ≤ p < ∞;
the L∞ norm is just ‖X‖∞ = maxi Xi. It is well-known that for all X ∈ Rn and p < q,
‖X‖p ≥ ‖X‖q [HLP88].

All of the problems we consider in this paper have the property that a solution to the
problem induces a vector of length n; thus, for each instance I of such a problem, we have a
set V(I) consisting of all vectors that are induced by some feasible solution to the instance.
For a norm ‖·‖, let ‖X‖ denote the norm of the vector X. We state two well-known facts for
easy reference: the latter follows directly from the convexity of xp.

Fact 1 (Generalized AM-GM [Ste04]) 1
p A + p−1

p B ≥ A1/pB(p−1)/p

Fact 2 (The Discrete Differential) Let p ≥ 1. If the real numbers a, b, and c satisfy c = a− b ≥ 0,
then ap − bp ≤ c · p · ap−1.

2 The Lp Set Cover Problem
We show that the greedy algorithm simultaneously gives an (p + ln p + 3)-approximation
for the Lp Set Cover problem for all p, hence generalizing the fact that it is an O(log n)-
approximation for MIN SET COVER (i.e., the L∞ ≈ Llog n case) and 4-approximation for the
L1 case. We then show that for any p, we give a hardness of approximation result of Ω(p).

GOLOVIN, GUPTA, KUMAR, TANGWONGSAN FSTTCS 2008 5

2.1 An Upper Bound for the Greedy Algorithm
Consider the familiar setup. We have a universe U of n elements and a family F of subsets
of U . The greedy algorithm picks sets S1, S2, . . . , St from F until ∪iSi = U , such that each Si
satisfies |Si \ (∪j<iSj)| = maxS∈F{|S \ (∪j<iSj)|}.

Let ci be the cost of the set Si. Let si be the cumulative cost of the first i sets picked by
the greedy algorithm. That is, s0 = 0 and si+1 = si + ci+1. Let Xi = Si\(∪j<iSj) be the set of
elements with cover index i. Let Ri = U − ⋃i−1

j=1 Xj be the elements uncovered just before
the ith set is picked. We use S∗i , c∗i , s∗i , X∗i and R∗i to denote the analogous quantities for the
optimal algorithm.

For a fixed value of p, the cost of the greedy algorithm (denoted by greedy) can be written
in terms of the values Xi and Ri as follows:

greedy =
(
∑i>0 sp

i |Xi|
)1/p

(1)

=
(
∑i>0(sp

i − sp
i−1)|Ri|

)1/p
, (2)

where the second expression follows from the fact that |Ri+1| = |Ri| − |Xi|. The cost of the
optimal algorithm can be expressed in a similar fashion.

The following lemma upper bounds the cost of greedy by a somewhat exotic expression,
which will later turn out to be crucial to our analysis.

Lemma 3 (Upper-bound on Greedy)

greedyp ≤ (greedy′)p def= ∑
i>0

(
p · ci
|Ri|
|Xi|

)p

· |Xi|

PROOF. Let Ai =
(

p · ci
|Ri |
|Xi |
)p · |Xi| be the ith term in the summation above. Taking the

ith terms in the expressions (1) and (2) measuring the cost of the greedy algorithm, and
raising them to the pth powers, define Bi = (sp

i − sp
i−1) |Ri| and Ci = sp

i |Xi|. It follows from

Fact 1 that 1
p Ai +

p−1
p Ci ≥ A1/p

i C(p−1)/p
i = p · ci · sp−1

i |Ri| ≥ Bi. The last inequality follows
from Fact 2 and the observation that ci = si − si−1. Now, rearranging terms, we have that
Ai ≥ p Bi − (p− 1) Ci; summing this over all i and noting that ∑i Bi = ∑i Ci = greedyp, we

get that ∑i

(
p · ci

|Ri |
|Xi |
)p · |Xi| = ∑i Ai ≥ p ∑i Bi − (p− 1) ∑i Ci = greedyp, which completes

the proof.
Given this upper bound on the cost of the greedy algorithm, we now compare this to the

optimal Lp set cover cost. While the structure of the remainder of the proof follows that by
Feige et al. [FLT04] for the L1 case, we need a few new ingredients, most notably obtaining
the correct “price” function.

Theorem 4 (Lp Approximation Guarantee) The greedy algorithm gives a (1 + p)1+1/p ≤ (p +
ln p + 3)-approximation for the Lp set cover problem.
PROOF. Recall that greedy and opt denote the cost of the greedy algorithm and the optimal
algorithm, respectively. We show opt graphically as in Figure 1 (left). The horizontal axis is
divided into n equal columns, corresponding to the elements of the universe U . The elements
are arranged from left to right in the order that the optimal algorithm covers them. The

6 ALL-NORMS AND ALL-Lp-NORMS APPROXIMATION ALGORITHMS

column corresponding to the element x has height (s∗index∗(x))
p. Thus the area under the curve

is optp.
As Lemma 3 shows, greedyp can be upper-bounded by the expression (greedy′)p. The

right panel of Figure 1 models the quantity (greedy′)p. The diagram has n columns corre-
sponding to the elements of U appearing from left to right in the order that the greedy
algorithm covers them. For each element of Xi, its corresponding column has height
[p · ci|Ri|/|Xi|]p.

Elements of U

s∗1
p

s∗2
p

s∗3
p

s∗4
p

Area = optp.

Elements of U

Area = (greedy′)p.

Figure 1: Graphical representations of the cost of the optimal algorithm (left) and an upper
bound of the cost of the greedy algorithm (right).

We will now show that the area of the (greedy′)p curve is at most pp(1 + p)(1 + 1/p)p

times the area of the optp curve. To prove this, we scale the (greedy′)p curve down by
[p(1 + 1/p)]p vertically and by 1 + p horizontally, and place this scaled curve so that its
bottom-right is aligned with the bottom-right of the optp curve. Now consider a point
q = (x, y) on the original (greedy′)p curve. Suppose the point q corresponds to an element of
Xi, so y ≤ [p · ci|Ri|/|Xi|]p. Also the distance to q from the right side is at most |Ri|. Therefore,

the height of the point q after scaling, which we denote by h, is at most
(

1
1+1/p · |Ri |

|Xi |/ci

)p
, and

the distance from the right (after scaling), denoted by r, is at most |Ri|/(1 + p).
In order to show that the point q (after scaling) lies within the optp curve, it suffices

to show that when the optimal algorithm’s cover time is h1/p, at least r points remain
uncovered. Consider the set Ri. Within this set, the greedy algorithm covers the most
elements per unit increase in cover time. Therefore, the number of elements from Ri that
the optimal algorithm can cover in time h1/p is at most

(
1

1+1/p · |Ri |
|Xi |/ci

) |Xi |
ci
≤ 1

1+1/p |Ri|, and

so at least 1
1+p |Ri| elements remain uncovered at time h1/p. Since |Ri|/(1 + p) ≥ r, this

implies that q (after scaling) lies within the optp curve, and hence the scaled-down version
of the (greedy′)p curve is completely contained within the optp curve. Quantitatively, this
implies that greedyp ≤ (1 + p)[p(1 + 1/p)]p optp = (1 + p)p+1 optp. It can be shown that
(1 + p)1+1/p ≤ p + ln p + 3 for p ≥ 1, which completes the proof.

Having shown that the greedy algorithm gives an O(p) approximation for any fixed p, in
the full version we give an example for which the greedy algorithm is an Ω(p) approximation.

Theorem 5 (Tight Example for Greedy) There is a set system on which greedy yields an Ω(p)
approximation.

GOLOVIN, GUPTA, KUMAR, TANGWONGSAN FSTTCS 2008 7

2.2 A Matching Hardness Result for Lp Set Cover
In this section, we show that the greedy algorithm achieves the best possible approximation
factor up to constant factors; indeed, we show that even if we fix a value of p, there is no
polynomial-time algorithm approximating Lp set cover problem better than Ω(p) unless
NP ⊆ DTIME(nO(log log n)). We first prove a technical lemma.

Lemma 6 Let #OPT(I) denote the number of sets an optimal algorithm (for the classical min set
cover) needs to cover the set-cover instance I. Let ε > e2. Let t : N → R+ be a non-decreasing
function such that 1 ≤ t(n) ≤ logε n for all n. If there exists an efficient algorithm A such that
for all n > 0, for all instance I with n elements, A covers at least n · (1− ε−t(n)) elements with
t(n) · #OPT(I) sets, then NP ⊆ DTIME(nO(log log n)).

The proof is standard and can be found in the full version [GGKT07].

Lemma 7 Suppose δ > 0, and p(n) = ω(1) is non-decreasing and 1 ≤ p(n) ≤ (1
2 − δ) ln n for all

n. Then the Lp set-cover problem is Ω(p)-hard to approximate unless NP ⊆ DTIME(nO(log log n)).

PROOF. Assume NP * DTIME(nO(log log n)). Let p (the norm parameter), ε > e2 be given,
and let t(n) = p(n). (Note that since t(n) must be less than logε n, and ε > e2, we need
the upper bound of (1

2 − δ) ln n on p(n).) As a direct consequence of Lemma 6 and our
complexity assumption, we know that for all efficient algorithm A, there is n > 0 such that
there is an instance I of size n such that using t(n) · #OPT(I) sets, A has at least n · ε−t(n)

elements remaining.
Let A be any polynomial-time algorithm for solving Lp set cover. Fix n and such an

instance I. Let opt denote the Lp cost of any optimal algorithm on the instance I, and
let alg denote the Lp cost of the algorithm A. As before, let Xi denote the elements with
cover index i and let Ri denote the elements with cover index i or greater A’s solution, and
let X∗i and R∗i denote the analogous sets for the optimal solution. We know that optp =
∑k

i=1 ip|X∗i | ≤ n · [#OPT(I)]p, because the classical solution is also a solution of the Lp version.
On the other hand, algp ≥ sp · |Rs| for all s > 0. In particular, with s = p · #OPT(I) and
our lower bound on |Rs| from Lemma 6, we conclude algp ≥ (#OPT(I) · p)p · n

εp Therefore,

alg/opt ≥ ((p/ε)p)1/p = p/ε = Ω(p).

Lemma 8 For p(n) = O(1), it is impossible to approximate Lp set cover better than Ω(p) unless
P = NP.
PROOF. Feige et al. [FLT04] shows that, for all c0, ε > 0, there are set cover instances such
that it is NP-hard to distinguish between the following two cases: (1) There is a set cover of
size t, or (2) For all integers x such that 1 ≤ x ≤ c0t, every collection of x sets leaves at least a
fraction of (1− 1/t)x − ε of the elements uncovered.

It follows that if we guess t, any algorithm leaving fewer than ((1− 1/t)x − ε) n elements
uncovered after buying x sets, for any x ∈ [1, c0t], allows us to solve an NP-Complete
problem. Thus unless P = NP, every polynomial time algorithm run on these instances has
at least ((1− 1/t)x − ε) n elements uncovered after buying x sets, for any x ∈ [1, c0t].

Now fix p and a polynomial time algorithm A and let algp be the pth power its cost for
the Lp set-cover problem. Let optp denote the corresponding quantity for the optimal solution.
Let g(x) := xp − (x− 1)p. Recall algp = ∑x |Rx| · g(x), where Rx is the set of elements with
cover index at least x. Suppose that there is a set cover of size t. In that case it is not too hard

8 ALL-NORMS AND ALL-Lp-NORMS APPROXIMATION ALGORITHMS

to show that optp ≤ ∑t
x=1
(n

t

)
xp, since after buying x sets the optimal solution covers at least

n
t x elements. Thus optp ≤ n · tp. On the other hand:

algp = ∑
x≥1
|Rx|g(x) ≥

c0·t
∑
x=1

(
(1− 1

t
)x − ε

)
n · g(x) ≈ n

∫ c0·t

x=1

(
e−

x
t − ε

)
g(x)dx

Note that t = ω(1), so (1− 1/t)x ≈ e−x/t is an arbitrarily accurate approximation. If we
can set c0 > (p + 1) and ε ≤ e−(p+1)/2 it is not too hard to show algp = Ω(ntp (p

e

)p), simply

by considering the contribution of ∑
(p+1)·t
x=pt

(
e−x/t − ε

)
n · g(x) to algp. Thus algp/optp =

Ω(
(p

e

)p), and we obtain a gap of alg/opt = Ω(p) for all constant p.
Combining Lemma 7 and Lemma 8 immediately yields the following theorem.

Theorem 9 Unless NP ⊆ DTIME(nO(log log n)), for all δ > 0 and p = p(n) such that 1 ≤
p(n) ≤ (1

2 − δ) ln(n), it is impossible to approximate Lp set cover better than Ω(p).

2.3 Submodular Set Cover
We now consider a generalization of the Lp set cover problem. Our setting now assumes a
(monotone) submodular function f : 2V → R+. Using techniques similar to those above, we
can analyze the greedy algorithm’s performance on this generalization, and obtain the same
approximation guarantee. Thus, if action xi takes ci time to perform, and we perform actions
x1, x2, . . . , xk in that order, the total cost will be(

∑k
i=1 (f (Si)− f (Si−1)) ·

(
∑i

j=1 cj

)p)1/p

where Si := {x1, x2, . . . , xi}. The objective is to select the permutation that minimizes this
cost. The proof of the following theorem appears in the full version [GGKT07].

Theorem 10 (Submodular Lp Approximation Guarantee) The greedy algorithm gives a (1 +
p)1+1/p ≤ p + ln p + 3-approximation for the submodular Lp set cover problem.

2.4 The Pipelined Set Cover Problem
Closely related to the Lp set cover problem is the Lp pipelined set cover problem. In Lp-
pipelined set cover, the cost function is given by:

cost =
(
∑i≥0 ci|Ri|p

)1/p

This formulation follows [MBMW05] but incorporates the notion of cost for each set. §

When p = 1, this cost function is the same that for the Lp case (and the min sum set cover
problem). For this problem, we use the technique in the proof of Theorem 4 to argue that the
greedy algorithm achieves the following approximation ratio; previous work [MBMW05]
gave no approximation guarantee the general costs case. The proof is given in the full version.

Theorem 11 (Pipelined Set-Cover Approximation Guarantee) The standard greedy algorithm
gives a (1 + ln p

p + 3
p)-approximation for the Lp pipelined set-cover problem.

§This expression, in fact, differs from that defined by Munagala et al. [MBMW05]: their objective raises ci to
the pth power. However, this only changes the quantity minimized in the greedy step, and hence we use this
expression for convenience.

GOLOVIN, GUPTA, KUMAR, TANGWONGSAN FSTTCS 2008 9

3 All Lp Norm Approximations via Sampling Norms
We now ask the following question: Is there a small “basis” set of Lp norms that “approximate”
all other Lp norms? Formally, given two vectors X and Y of length n each, is there a set S
of indices such that if ‖X‖p ≤ ‖Y‖p for all p ∈ S, then the same inequality holds (up to a
constant approximation) for all Lp norms? Given such a set S, we can imagine finding a
solution for each Lp with p ∈ S, and then “composing” them together to get solution that is
good for all Lp norms. In this section, we will show that there is indeed such a set S of size
O(log n); if we are interested in maintaining Lp norms only for integer p, then we can get a
set of size O(

√
log n). Moreover, we show that both these bounds are tight. Proofs omitted

from this section appear in the full version [GGKT07].

Definition 12 (α-Sampling) For a domain D ⊆ R≥1 ∪ {∞}, a set S ⊆ D is an α-sampling of D
of order n if for all pairs of non-negative vectors X, Y ∈ Rn

≥0

‖X‖p ≤ ‖Y‖p for all p ∈ S ⇒ ‖X‖p ≤ α · ‖Y‖p for all p ∈ D.

Such samplings prove useful in the All Lp Norm framework in the following way.

Theorem 13 Given a minimization problem whose objective function is the Lp norm of some cost
vector, and an α-sampling S of D ⊆ R≥1 ∪ {∞}, then a cost vector C that is a simultaneous
β-approximation for the class {Lp | p ∈ S} is a simultaneous αβ-approximation for the class
{Lp | p ∈ D}.

We prove the following tight bounds on the size of O(1)-samplings.

Theorem 14 (Tight Bounds on O(1)-Samplings) There exists an O(1)-sampling of the domain
Dreals = R≥1 ∪ {∞} of order n with size |S| = O(log n), and an O(1)-sampling of the domain
Dints = Z≥1 ∪ {∞} of order n with size O(

√
log n). Moreover, one cannot obtain smaller O(1)-

samplings for either of these domains.

3.1 All Lp Norm Approximations for Facility Location Problems
In this section, we show how the O(1)-samplings immediately give algorithms for the
All Lp Norm k-facility location problems. As mentioned in the introduction, we can imagine
an abstract facility location problem where given a metric space (V, d) with demand points
D ⊆ V, we open a set of at most k facilities F ⊆ V and assign each demand to a facility.
This naturally gives a vector C of assignment costs for the demands with each solution: the
k-median problem now minimizes ‖C‖1, the k-means problem looks at ‖C‖2, and the k-center
problem at ‖C‖∞, etc. Let optp(k) denote a solution opening k facilities that minimizes the Lp
norm of the vector of assignment costs. For any set of open facilities F, let Costp(F) denote
the `p norm of the resulting vector of assignment costs. The following theorem shows how
to get an All Lp Norm approximation to such problems.

Theorem 15 There exists a set F of O(k log n) facilities F such that Costp(F) ≤ O(1) ·Costp(optp(k))
for all p ≥ 1. If we want this to hold for all Lp norms for integer values of p only, then we need only
O(k

√
log n) facilities. Moreover, we can find these facilities in polynomial time in both cases.

The proof is immediate from Theorems 13 and 14, and the fact that for any 1 ≤ p < ∞,
one can use existing techniques to get an O(1)-approximation algorithm for minimizing
the `p norm ‖C‖p. Indeed, all the approximation algorithms for the k-median problem

10 ALL-NORMS AND ALL-Lp-NORMS APPROXIMATION ALGORITHMS

cited above have the following additional property—if the underlying space only satisfies
a λ-relaxed triangle-inequality (i.e., the distances satisfy d(x, y) ≤ λ · (d(x, z) + d(y, z) for
the parameter λ ≥ 1), then these algorithms give an O(λ)-approximation algorithm for the
k-median problem. The problem of minimizing the (pth power of) the `p norm of assignment
cost can be thought of as the k-median problem where distance between two points x and y
is given by d(x, y)p. Now these distances satisfy the λ = 2p-relaxed triangle-inequality, and
hence we get an [O(2p)]1/p-approximation algorithm for the `p norm.

Kumar and Kleinberg showed that we need to open Ω(k log n) facilities to get an O(1)-
AllNorm-approximation. That proof does not work for the All Lp Norm case; however, we can
show the following result.

Theorem 16 Given a parameter α, there exists a metric space over n demand points such that for a

set of facilities F satisfying Costp(F) ≤ α · optp(k) for all integer p ≥ 1, |F| ≥ Ω
(
k
(log n

log(αk)

) 1
3
)
. In

fact, the lower bound holds even for Lp norms with integer p.
It is an interesting open problem if we can open o(k log n) facilities and still be O(1)-
competitive against all Lp norms.

4 AllNorm Approximation Algorithms
In the previous sections, we were interested in All Lp Norm approximations, and situations
where focusing on Lp norms (instead of all symmetric norms) would give more nuanced
results. In this section, we give results for the AllNorm case; complete proofs of the theorems
in this section appear in the full version [GGKT07].

For a vector X, define
←−
X as the vector obtained by sorting the coordinates of X in

descending order. Given vectors X and Y of length n each, we say that X is α-submajorized by
Y (written as X ≺α Y) if for all i ∈ [n], ∑j≤i

←−
X j ≤ α ∑j≤i

←−
Y j (i.e., the partial sums of

←−
X are

at most α times the partial sums in
←−
Y). Intuitively, this means that the k unhappiest elements

in X are together at most α times worse off than the k unhappiest elements of Y: we will
want to find solutions X which are α-submajorized by any other solution Y (for small α). The
following result is well-known (see, e.g., [Ste04]).

Theorem 17 Let X and Y be two vectors of equal length, such that X is α-submajorized by Y. Then
f (X) ≤ f (α · Y) for all real symmetric convex functions. In particular, if f is a symmetric norm,
then f (X) ≤ α f (Y).

4.1 AllNorm Approximation from Partial Covering Algorithms
We now show how solutions for “partial covering” problems can be used to prove subma-
jorization results; these submajorization results immediately lead to AllNorm approximations
for these problems by Theorem 17. Partial covering problems include the k-MST problem
(find a tree of minimum cost spanning at least k nodes), or the k-vertex cover problem (find a
set of nodes of minimum size/cost that covers at least k edges). In this paper, we show how
an O(1)-approximation to the k-MST problem implies an O(1)-submajorization result, and
how these ideas extend to other partial cover problems.

Theorem 18 For a TSP instance on a graph G = (V, E), given a tour π, let ti be the time at which
the salesperson reaches vertex vi, and let Tπ = (t1, t2, . . . , tn) be the vector of these arrival times
sorted in ascending order. Then there is a solution where the arrival time vector is α-submajorized by
the corresponding vector in any other solution, where α ≤ 16.

GOLOVIN, GUPTA, KUMAR, TANGWONGSAN FSTTCS 2008 11

The ideas behind this theorem can be used to show that Set Cover problem admits
an O(log n)-AllNorm approximation, Vertex Cover an 8-AllNorm approximation, etc. Let
us sketch the idea for Vertex Cover: first use the fact that k-vertex cover admits a 2-
approximation [BB98, Hoc98, BY01, GKS04]. This gives us an algorithm that given a budget
B, finds a solution of cost 2B in poly-time which covers at least as many edges as any other
solution of cost B. Setting the value of B to be successive powers of 2, we can argue that if
any other algorithm covers k elements with cost at most 2i−1, then we would have covered
at least k elements with cost at most 4 · 2i; this gives us an 8-submajorization. See the pa-
pers [GKS04, KPS06] for results on partial covering problems (all of which can be similarly
extended).

4.2 AllNorm Algorithms for Flow Time on Parallel Machines
Finally, we consider the problem of scheduling jobs on parallel machines: given a schedule
A, the vector of interest is the vector FA of flow times, where the flow time is the difference
between its completion time and release date—hence, the `1 norm of this vector is the
problem of minimizing the average flow time on parallel machines: see, [CKZ01] and the
references therein for several polynomial-time logarithmic-approximation algorithms.

It is known that for any schedule A, the All Lp Norm-guarantee αALN(FA) is unbounded
even if there is only one machine [BP04]: hence results have been given in the resource
augmentation framework by giving our machines (1 + ε)-speed. In particular, Bansal and
Pruhs [BP04], and Chekuri et al. [CGKK04] gave results showing that given any constant
ε > 0, we can get an O(1

εO(1))-approximation algorithm for all `p norms. In this paper, we
show that one can extend their results to a submajorization, and hence AllNorm result.

Theorem 19 There exists a schedule A such that FA β-submajorizes FB for all schedules B, where β
is a constant (depending only on ε).

References
[AE05] Yossi Azar and Amir Epstein. Convex programming for scheduling unrelated parallel machines.

In STOC’05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 331–337,
New York, 2005. ACM.

[AERW04] Yossi Azar, Leah Epstein, Yossi Richter, and Gerhard J. Woeginger. All-norm approximation
algorithms. J. Algorithms, 52(2):120–133, 2004.

[AT04] Yossi Azar and Shai Taub. All-norm approximation for scheduling on identical machines. In
Algorithm theory—SWAT 2004, volume 3111 of Lecture Notes in Comput. Sci., pages 298–310. Springer,
Berlin, 2004.

[BB98] Nader H. Bshouty and Lynn Burroughs. Massaging a linear programming solution to give a
2-approximation for a generalization of the vertex cover problem. In STACS 98 (Paris, 1998), volume
1373 of Lecture Notes in Comput. Sci., pages 298–308. Springer, Berlin, 1998.

[BCC+94] Avrim Blum, Prasad Chalasani, Don Coppersmith, Bill Pulleyblank, Prabhakar Raghavan, and
Madhu Sudan. The minimum latency problem. In Proceedings of the twenty-sixth annual ACM
symposium on Theory of computing, pages 163–171. ACM Press, 1994.

[BNBH+98] Amotz Bar-Noy, Mihir Bellare, Magnús M. Halldórsson, Hadas Shachnai, and Tami Tamir. On
chromatic sums and distributed resource allocation. Inform. and Comput., 140(2):183–202, 1998.

[BP03] Nikhil Bansal and Kirk Pruhs. Server scheduling in the Lp norm: a rising tide lifts all boat. In
Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pages 242–250, New
York, 2003. ACM.

[BP04] Nikhil Bansal and Kirk Pruhs. Server scheduling in the weighted lp norm. In LATIN 2004: Theoretical
informatics, volume 2976 of Lecture Notes in Comput. Sci., pages 434–443. Springer, Berlin, 2004.

[BY01] Reuven Bar-Yehuda. Using homogeneous weights for approximating the partial cover problem. J.
Algorithms, 39(2):137–144, 2001.

12 ALL-NORMS AND ALL-Lp-NORMS APPROXIMATION ALGORITHMS

[CFK03] Edith Cohen, Amos Fiat, and Haim Kaplan. Efficient sequences of trials. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 2003), pages 737–
746, New York, 2003. ACM.

[CGKK04] Chandra Chekuri, Ashish Goel, Sanjeev Khanna, and Amit Kumar. Multi-processor scheduling to
minimize flow time with ε resource augmentation. In Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, pages 363–372, New York, 2004. ACM.

[Chv79] V. Chvátal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4(3):233–235, 1979.
[CKZ01] Chandra Chekuri, Sanjeev Khanna, and An Zhu. Algorithms for minimizing weighted flow time.

In Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pages 84–93
(electronic), New York, 2001. ACM.

[Fei98] U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
[FLT04] Uriel Feige, László Lovász, and Prasad Tetali. Approximating min sum set cover. Algorithmica,

40(4):219–234, 2004.
[GGKT07] Daniel Golovin, Anupam Gupta, Amit Kumar, and Kanat Tangwongsan. All-Norms and All-Lp-

Norms approximation algorithms. Technical Report CMU-CS-07-153, School of Computer Science,
Carnegie Mellon University, September 2007.

[GKS04] Rajiv Gandhi, Samir Khuller, and Aravind Srinivasan. Approximation algorithms for partial
covering problems. J. Algorithms, 53(1):55–84, 2004.

[GM06] Ashish Goel and Adam Meyerson. Simultaneous optimization via approximate majorization for
concave profits or convex costs. Algorithmica, 44(4):301–323, 2006.

[GMP01] Ashish Goel, Adam Meyerson, and Serge Plotkin. Combining fairness with throughput: online
routing with multiple objectives. J. Comput. System Sci., 63(1):62–79, 2001.

[HLP88] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge Mathematical Library. Cam-
bridge University Press, Cambridge, 1988. Reprint of the 1952 edition.

[Hoc98] Dorit S. Hochbaum. The t-vertex cover problem: extending the half integrality framework with
budget constraints. In Approximation algorithms for combinatorial optimization (Aalborg, 1998), volume
1444 of Lecture Notes in Comput. Sci., pages 111–122. Springer, Berlin, 1998.

[Joh74] David S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. System Sci.,
9:256–278, 1974.

[KK00] Amit Kumar and Jon Kleinberg. Fairness measures for resource allocation. In 41st Annual Symposium
on Foundations of Computer Science (Redondo Beach, CA, 2000), pages 75–85. IEEE Comput. Soc. Press,
Los Alamitos, CA, 2000.

[KPS06] Jochen Könemann, Ojas Parekh, and Danny Segev. A unified approach to approximating partial
covering problems. In ESA’06: Proceedings of the 14th conference on Annual European Symposium,
pages 468–479, London, UK, 2006. Springer-Verlag.

[KRT01] Jon Kleinberg, Yuval Rabani, and Éva Tardos. Fairness in routing and load balancing. J. Comput.
System Sci., 63(1):2–20, 2001. Special issue on internet algorithms.

[Lov75] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Math., 13(4):383–390, 1975.
[MBMW05] Kamesh Munagala, Shivnath Babu, Rajeev Motwani, and Jennifer Widom. The pipelined set cover

problem. In Database theory—ICDT 2005, volume 3363 of Lecture Notes in Comput. Sci., pages 83–98.
Springer, Berlin, 2005.

[Sla97] Petr Slavı́k. A tight analysis of the greedy algorithm for set cover. J. Algorithms, 25(2):237–254, 1997.
[Sri99] Aravind Srinivasan. Improved approximation guarantees for packing and covering integer pro-

grams. SIAM J. Comput., 29(2):648–670, 1999.
[Ste04] J. Michael Steele. The Cauchy-Schwarz master class. MAA Problem Books Series. Mathematical Asso-

ciation of America, Washington, DC, 2004. An introduction to the art of mathematical inequalities.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

	Introduction
	The Lp Set Cover Problem
	All Lp Norm Approximations via Sampling Norms
	AllNorm Approximation Algorithms

